Citation: Cao Shanshan, Liu Zhaohong, Yuan Haiyan, Yang Liu, Zhang Jingping, Bi Xihe. Computational Studies on Reaction Mechanism of the Catalyst-Controlled Selective Insertion of Metal Carbenoids into C-C and C-H Bonds of 1, 3-Dicarbonyl Compounds[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2468-2475. doi: 10.6023/cjoc202003003 shu

Computational Studies on Reaction Mechanism of the Catalyst-Controlled Selective Insertion of Metal Carbenoids into C-C and C-H Bonds of 1, 3-Dicarbonyl Compounds

  • Corresponding author: Liu Zhaohong, liuzh944@nenu.edu Zhang Jingping, zhangjp162@nenu.edu.cn Bi Xihe, bixh507@nenu.edu.cn
  • Received Date: 2 March 2020
    Revised Date: 13 May 2020
    Available Online: 19 May 2020

    Fund Project: the National Natural Science Foundation of China 21871043Project supported by the National Natural Science Foundation of China (Nos. 21871043, 21961130376)the National Natural Science Foundation of China 21961130376

Figures(8)

  • Density functional theory (DFT) calculations were carried out to investigate the mechanism and chemoselectivity of silver-or scandium-catalyzed insertion of diazo compounds into C-C or C-H bonds of 1, 3-dicarbonyl compounds. The results show that silver and scandium carbenes are readily generated by metal-induced extrusion of nitrogen from diazo compounds. When low-coordinated silver(I) is used as the catalyst, carbene insertion into the C-C bond of 1, 3-dicarbonyls leads to 1, 4-dicarbonyl product containing an all-carbon α-quaternary center, through a cascade sequence of electrophilic addition, intramolecular cyclization, selective ring-opening and enol isomerization. When highly coordinated scandium(III) is used, carbene insertion into C-H bond of 1, 3-dicarbonyls leads to 1, 3-dicarbonyl product containing α-tertiary center, through a cascade sequence of electrophilic addition and protonation. Computational studies show that the chemoselectivity results from the cooperative effect of ring tension and the difference in coordination number of metal centers, which provides useful insight into the development of transition metal-catalyzed carbene transfer reactions.
  • 加载中
    1. [1]

      (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
      (b) Long, R.; Huang, J.; Gong, J. X.; Yang, Z. Nat. Prod. Rep. 2015, 32, 1584.
      (c) Zeng, X.; Cao, Z.; Wang, Y.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
      (d) Ling, T.; Rivas, F. Tetrahedron 2016, 72, 6729.
      (e) Shimizu, M. Angew. Chem., Int. Ed. 2011, 50, 5998.
      (f) Wang, B.; Tu, Y. Acc. Chem. Res. 2011, 44, 1207.

    2. [2]

      Christoffers, J.; Baro, A. Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis, Wiley-VCH, Weinheim, 2005.

    3. [3]

      (a) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
      (b) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.

    4. [4]

      (a) Candeias, N. R.; Paterna, R.; Gois, M. P. Chem. Rev. 2016, 116, 2937.
      (b) Guttenberger, N.; Breinbauer, R. Tetrahedron 2017, 73, 6815.
      (c) Li, W.; Liu, X.; Tan, F.; Hao, X.; Zheng, J.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2013, 52, 10883.
      (d) Li, W.; Liu, X.; Hao, Y.; Cai, Y.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2012, 51, 8644.
      (e) Moebius, D. C.; Kingsbury, J. S. J. Am. Chem. Soc. 2009, 131, 878.
      (f) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 2434.

    5. [5]

      (a) Xia, Y.; Liu, Z. X.; Liu, Z.; Ge, R.; Ye, F.; Hossain, M.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2014, 136, 3013.
      (b) Wang, Y.; Wang, Y.; Zhang, W. J.; Zhu, Y.; Wei, D.; Tang, M. Org. Biomol. Chem. 2015, 13, 6587.

    6. [6]

      (a) Liu, Z.; Sivaguru, P.; Zanoni, G.; Anderson, E. A.; Bi, X. Angew. Chem., Int. Ed. 2018, 57, 8927.
      (b) Liu, Z.; Zhang, X.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. iScience 2018, 8, 54.

    7. [7]

    8. [8]

      (a) Zhan, G.; Du, W.; Chen, Y. Chem. Soc. Rev. 2017, 46, 1675.
      (b) Mahatthananchai, J.; Dumas, A. M.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 10954.
      (c) Schreiber, S. L. Science 2000, 287, 1964.

    9. [9]

      Liu, F.; Zhu, L.; Zhang, T.; Zhong, K.; Xiong, Q.; Shen, B.; Liu, S.; Lan, Y.; Bai, R. ACS Catal. 2020, 10, 1256.  doi: 10.1021/acscatal.9b02040

    10. [10]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT, 2009.

    11. [11]

      (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
      (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
      (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
      (d) Qi, X.; Zhang, H.; Shao, A.; Zhu, L.; Xu, T.; Gao, M.; Liu, C.; Lan, Y. ACS Catal. 2015, 5, 6640.
      (e) Xiao, P.; Yuan, H.; Liu, J.; Zheng, Y.; Bi, X.; Zhang, J. ACS Catal. 2015, 5, 6177.

    12. [12]

      (a) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. J. Chem. Phys. 1989, 91, 1762.
      (b) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866.

    13. [13]

      (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161.
      (b) Fukui, K. Acc. Chem. Res. 1981, 14, 363.

    14. [14]

      Peverati, R.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2012, 14, 16187.  doi: 10.1039/c2cp42576a

    15. [15]

      (a) Ji, C. L.; Hong, X. J. Am. Chem. Soc. 2017, 139, 15522.
      (b) Yang, Y. F.; Cheng, G. J.; Liu, P.; Leow, D.; Sun, T. Y.; Chen, P.; Zhang, X.; Yu, J. Q.; Wu, Y. D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344.
      (c) Xu, X.; Liu, P.; Shu, X. Z.; Tang, W.; Houk, K. N. J. Am. Chem. Soc. 2013, 135, 9271.
      (d) Komagawa, S.; Wang, C.; Morokuma, K.; Saito, S.; Uchiyama, M. J. Am. Chem. Soc. 2013, 135, 14508.
      (e) Liu, P.; Xu, X.; Dong, X.; Keitz, B. K.; Herbert, M. B.; Grubbs, R. H.; Houk, K. N. J. Am. Chem. Soc. 2012, 134, 1464.

    16. [16]

      (a) Liu, F.; Zhu, L.; Zhang, T.; Zhong, K.; Xiong, Q.; Shen, B.; Liu, S.; Lan, Y.; Bai, R. ACS Catal. 2020, 10, 1256.
      (b) Xiao, P.; Yuan, H.; Liu, J.; Zheng, Y.; Bi, X.; Zhang, J. ACS Catal. 2015, 5, 6177.
      (c) Qi, X.; Zhang, H.; Shao, A.; Zhu, L.; Xu, T.; Gao, M.; Liu, C.; Lan, Y. ACS Catal. 2015, 5, 6640.
      (d) Daru, J.; Benda, Z.; Póti, Á.; Novák, Z.; Stirling, A. Chem.-Eur. J. 2014, 20, 15395.
      (e) Zhou, B.; Yan, T.; Xue, X.-S.; Cheng, J.-P. Org. Lett. 2016, 18, 6128.

    17. [17]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.  doi: 10.1021/jp810292n

    18. [18]

      Legault, C. Y. CYLview, version 1.0b, 2009 http://www.cylview.org/.

    19. [19]

      (a) Hu, X.; Tang, Y.; Gantzel, P.; Meyer, K. Organometallics 2003, 22, 612.
      (b) Liu, Q.-X.; Yao, Z.-Q.; Zhao, X.-J.; Chen, A.-H.; Yang, X.-Q.; Liu, S.-W.; Wang, X.-G. Organometallics 2011, 30, 3732.

    20. [20]

      Zhang, J.; Shan, C.; Zhang, T.; Song, J.; Liu, T.; Lan, Y. Coord. Chem. Rev. 2019, 382, 69.  doi: 10.1016/j.ccr.2018.12.009

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    15. [15]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(19)
  • Abstract views(1876)
  • HTML views(458)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return