Citation: Wang Xin, Li Guofeng, Sun Kai, Zhang Bing. Peroxide-Induced Radical Relay Carbocyclization towards Polycyclic Benzimidazole[2, 1-a]isoquinolines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 913-921. doi: 10.6023/cjoc202002040 shu

Peroxide-Induced Radical Relay Carbocyclization towards Polycyclic Benzimidazole[2, 1-a]isoquinolines

  • Corresponding author: Sun Kai, sunk468@nenu.edu.cn Zhang Bing, zhangb@zzu.edu.cn
  • Received Date: 27 February 2020
    Revised Date: 29 February 2020
    Available Online: 6 March 2020

    Fund Project: the National Natural Science Foundation of China 21801007Project supported by the National Natural Science Foundation of China (No. 21801007) and the Program for Innovative Research Team of Science and Technology in the University of Henan Province (Nos. 18IRTSTHN004, 18HASTIT006)the Program for Innovative Research Team of Science and Technology in the University of Henan Province 18HASTIT006the Program for Innovative Research Team of Science and Technology in the University of Henan Province 18IRTSTHN004

Figures(2)

  • In this paper, a new peroxide-induced carbon-centered radical relay carbocyclization reaction with 2-arylbenzo-imidazoles is described. This method provides an efficient route to a series of structurally diverse benzimidazole[2, 1-a]iso-quinolines under mild conditions in a straightforward manner. The reaction is compatible with a wide substrate scope, excellent functional group tolerance and high step economy. Mechanistic studies suggest that the reaction proceeds through a carbon-centered radical pathway.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      (a) Meng, G.; Niu, H.-Y.; Qu, G.-R.; Fossey, J. S.; Li, J.-P.; Guo, H.-M. Chem. Commun. 2012, 48, 9601.
      (b) Iaroshenko, V. O.; Ostrovskyi, D.; Miliutina, M.; Maalik, A.; Villinger, A.; Tolmachev, A.; Volochnyuk, D. M.; Langer, P. Adv. Synth. Catal. 2012, 354, 2495.
      (c) Sun, X.; Hu, Y.; Nie, S.-Z.; Yan, Y.-Z.; Zhang, X.-J.; Yan, M. Adv. Synth. Catal. 2013, 355, 2179.
      (d) Sun, X.; Lv, X.-H.; Ye, L.-M.; Hu, Y.; Chen, Y.-Y.; Zhang, X.-J.; Yan, M. Org. Biomol. Chem. 2015, 13, 7381.
      (e) Liu, Y.; Chen, G.-Q.; Tse, C.-W.; Guan, X.; Xu, Z.-J.; Huang, J.-S.; Che, C.-M. Chem. Asian J. 2015, 10, 100.
      (f) Nguyen, T. B.; Ermolenkoa, L.; Al-Mourabi, A. Chem. Commun. 2016, 52, 4914.

    5. [5]

    6. [6]

      Mai, S.-Y.; Luo, Y.-X.; Huang, X.-Y.; Shu, Z.-H.; Li, B.-N.; Lan, Y.; Song, Q.-L. Chem. Commun. 2018, 54, 10240.  doi: 10.1039/C8CC05390A

    7. [7]

      (a) Sun, K.; Li, S.-J.; Chen, X.-L.; Liu, Y.; Huang, X.-Q.; Wei, D.-H.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Chem. Commun. 2019, 55, 2861.
      (b) Zeng, F.-L.; Sun, K.; Chen, X.-L.; Yuan, X.-Y.; He, S.-Q.; Liu, Y.; Peng, Y.-Y.; Qu, L.-B.; Lv, Q.-Y.; Yu, B. Adv. Synth. Catal. 2019, 361, 5176.

    8. [8]

      (a) Barreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111, 5215.
      (b) Schönherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52, 12256.
      (c) Yan, G.-B.; Borah, A. J.; Wang, L.-G.; Yang, M.-H. Adv. Synth. Catal. 2015, 357, 1333.
      (d) Sun, S.-M.; Fu, J.-M. Bioorg. Med. Chem. Lett. 2018, 28, 3283.
      (e) Chen, Y.-T. Chem.-Eur. J. 2019, 25, 3405.

    9. [9]

      Rust, F. F.; Seubold, F. H.; Vaughan, W. E. J. Am. Chem. Soc. 1948, 70, 3258.  doi: 10.1021/ja01190a016

    10. [10]

      (a) Xia, Q.-Q.; Liu, X.-L.; Zhang, Y.-J.; Chen, C.; Chen, W.-Z. Org. Lett. 2013, 15, 3326.
      (b) Xu, Z.-B.; Yan, C.-X.; Liu, Z.-Q. A. Org. Lett. 2014, 16, 5670.
      (c) Li, G.; Yang, S.-L.; Lv, B.-J.; Han, Q.-Q.; Ma, X.-X.; Sun, K.; Wang, Z.-Y.; Zhao. F.; Lv, Y.-H.; Wu, H.-K. Org. Biomol. Chem. 2015, 13, 11184.
      (d) Bao, Y.-J.; Yan, Y.-Z.; Xu, K.; Su, J.-H.; Zha, Z.-G.; Wang, Z.-Y. J. Org. Chem. 2015, 80, 4736.
      (e) Li, Q.; Li, Y.-R.; Hu, W.-P.; Hu, R.-J.; Li, G.-G.; Lu, H.-J. Chem.-Eur. J. 2016, 22, 12286.
      (f) Zhang, P.-Z.; Li, J.-A.; Zhang, L.; Shoberu, A.; Zou, J.-P.; Zhang, W. Green Chem. 2017, 19, 919.

    11. [11]

      (a) Guo, S.-J.; Wang, Q.; Jiang, Y.; Yu, J.-T. J. Org. Chem. 2014, 79, 11285.
      (b) Yang, Y.; Bao, Y.-J.; Guan, Q.-Q.; Sun, Q.; Zha, Z.-G.; Wang, Z.-Y. Green Chem. 2017, 19, 112.
      (c) Zhu, N.-B.; Zhao, J.-G.; Bao, H.-L. Chem. Sci. 2017, 8, 2081.

    12. [12]

      (a) Dai, Q.; Yu, J.-T.; Jiang, Y.; Guo, S.-J.; Yang, H.-T.; Cheng, J. Chem. Commun. 2014, 50, 3865.
      (b) Dai, Q.; Yu, J.-T.; Feng, X.-M.; Jiang, Y.; Yang, H.-T.; Cheng, J. Adv. Synth. Catal. 2014, 356, 3341.
      (c) Tan, F.-L.; Song, R.-J.; Hu, M.; Li, J.-H. Org. Lett. 2016, 18, 3198.
      (d) Zhuang, H.; Zeng, R.; Zou, J.-P. Chin. J. Chem. 2016, 34, 368.
      (e) Bao, X.; Yokoe, T.; Ha, T. M.; Wang, Q.; Zhu, J.-P. Nat. Commun. 2018, 9, 3725.
      (f) Liu, D.; Yu, Y.-Q.; Xia, Z.; Song, Z.-N.; Liao, L.-H.; Tan, Z.; Chen, X. Eur. J. Org. Chem. 2019, 2019, 6930.

    13. [13]

      (a) Hix, S.; Kadiiska, M. B.; Mason, R. P.; Augusto, O. Chem. Res. Toxicol. 2000, 13, 1056.
      (b) Zhu, Y.; Yan, H.; Lu, L.-H.; Liu, D.-F.; Rong, G.-W.; Mao, J.-C. J. Org. Chem. 2013, 78, 9898.
      (c) Patel, O. P. S.; Nandwana, N. K.; Sah, A. K.; Kumar, A. Org. Bio-mol. Chem. 2018, 16, 8620.

    14. [14]

    15. [15]

      (a) Sun, K.; Wang, X.; Li, D.-H.; Zhu, Z.-H.; Jiang, Y.-Q.; Xiao, B.-B. Chem. Commun. 2014, 50, 12880.
      (b) Sun, K.; Lv, Y.-H.; Wang, J.-J.; Sun, J.-J.; Liu, L.-L.; Jia, M.-Y.; Liu, X.; Li, Z.-D.; Wang, X. Org. Lett. 2015, 17, 4408.
      (c) Sun, K.; Shi, Z.-D.; Liu, Z.-H.; Luan, B.-X.; Zhu, J.-L.; Xue, Y.-R. Org. Lett. 2018, 20, 6687.
      (d) Sun, K.; Wang, S.-N.; Feng, R.-R.; Zhang, Y.-X.; Wang, X.; Zhang, Z.-G.; Zhang, B. Org. Lett. 2019, 21, 2052.
      (e) Wang, X.; Li, C.-H.; Zhang, Y.-X.; Zhang, B.; Sun, K. Org. Biomol. Chem. 2019, 17, 8364.
      (f) Sun, K.; Li, G.-F.; Li, Y.-Y.; Yu, J.; Zhao, Q.; Zhang, Z.-G.; Zhang, G.-S. Adv. Synth. Catal. 2020, DOI: 10.1002/adsc.202000040.

    16. [16]

      (a) Liu, Y.-Y.; Xiong, J.; Wei, L.; Wan, J.-P. Adv. Synth. Catal. 2020, 362, 877.
      (b) Wan, J.-P.; Tu, Z.; Wang, Y.-Y. Chem.-Eur. J. 2019, 25, 6907.

    17. [17]

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    12. [12]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    18. [18]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

Metrics
  • PDF Downloads(12)
  • Abstract views(967)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return