Recent Advances in Transition-Metal Catalyzed Defunctionalization Reaction
- Corresponding author: Jin Weiwei, wwjin0722@163.com Liu Chenjiang, pxylcj@126.com
Citation:
Dong Xiaojuan, Jin Weiwei, Liu Chenjiang. Recent Advances in Transition-Metal Catalyzed Defunctionalization Reaction[J]. Chinese Journal of Organic Chemistry,
;2020, 40(7): 1860-1873.
doi:
10.6023/cjoc202002038
Modak, A.; Maiti, D. Org. Biomol. Chem. 2016, 14, 21.
doi: 10.1039/C5OB01949D
Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E. M.; Bals, S.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2016, 6, 7303.
doi: 10.1021/acscatal.6b02561
Ferrini, P.; Chesi, C.; Parkin, N.; Rinaldi, R. Faraday Discuss. 2017, 202, 403.
doi: 10.1039/C7FD00069C
Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864.
doi: 10.1039/C7CS00182G
Matsubara, S.; Yokota, Y.; Oshima, K. Org. Lett. 2004, 6, 2071.
doi: 10.1021/ol0492602
Dickstein, J. S.; Mulrooney, C. A.; O'Brien, E. M.; Morgan, B. J.; Kozlowski, M. C. Org. Lett. 2007, 9, 2441.
doi: 10.1021/ol070749f
Ladwein, K. I.; Jung, M. Angew. Chem., Int. Ed. 2011, 50, 1214
Modak, A.; Naveen, T.; Maiti, D. Chem. Commun. 2013, 49, 252.
doi: 10.1039/C2CC36951F
Modak, A.; Deb, A.; Patra, T.; Rana, S.; Maity, S.; Maiti, D. Chem. Commun. 2012, 48, 4253.
doi: 10.1039/c2cc31144e
Akanksha; Maiti, D. Green Chem. 2012, 14, 2314.
doi: 10.1039/c2gc35622h
(a) Huang, Y.-B.; Yang, Z.; Chen, M.-Y.; Dai, J.-J.; Guo, Q.-X.; Fu, Y. ChemSusChem 2013, 6, 1348.
(b) Chatterjee, M.; Ishizaka, T.; Kawanami, H. Green Chem. 2018, 20, 2345.
Li, W.-H.; Li, C.-Y.; Li, Y.; Tang, H.-T.; Wang, H.-S.; Pan, Y.-M.; Ding, Y.-J. Chem. Commun. 2018, 54, 8446.
doi: 10.1039/C8CC03109F
Ogiwara, Y.; Sakurai, Y.; Hattori, H.; Sakai, N. Org. Lett. 2018, 20, 4204.
doi: 10.1021/acs.orglett.8b01582
Dawes, G. J. S.; Scott, E. L.; Le NÔ tre, J.; Sanders, J. P. M.; Bitter, J. H. Green Chem. 2015, 17, 3231.
doi: 10.1039/C5GC00023H
Si, Y.-G.; Gardner, M. P.; Tarazi, F. I.; Baldessarini, R. J.; Neumeyer, J. L. J. Med. Chem. 2008, 51, 983.
Cao, D.; Zeng, H.; Li, C.-J. ACS Catal. 2018, 8, 8873.
doi: 10.1021/acscatal.8b02214
Sawadjoon, S.; Lundstedt, A.; Samec, J. S. M. ACS Catal. 2013, 3, 635.
doi: 10.1021/cs300785r
Pan, Y.; Holmes, C. P. Org. Lett. 2001, 3, 2769.
doi: 10.1021/ol0163732
Sajiki, H.; Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Org. Lett. 2006, 8, 987.
doi: 10.1021/ol060045q
Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem.-Eur. J. 2007, 13, 1432.
doi: 10.1002/chem.200601184
Hupp, C. D.; Neumeyer, J. L. Tetrahedron Lett. 2010, 51, 2359.
doi: 10.1016/j.tetlet.2010.02.146
Chow, W. K.; So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Chem. Front. 2014, 1, 464.
doi: 10.1039/C4QO00103F
Graham, T. H.; Liu, W.; Shen, D.-M. Org. Lett. 2011, 13, 6232.
doi: 10.1021/ol2026813
Matsumura, T.; Niwa, T.; Nakada, M. Tetrahedron Lett. 2012, 53, 4313.
doi: 10.1016/j.tetlet.2012.06.002
Matsumura, T.; Nakada, M. Tetrahedron Lett. 2014, 55, 1412.
doi: 10.1016/j.tetlet.2014.01.022
Ishihara, S.; Ido, A.; Monguchi, Y.; Nagase, H.; Sajiki, H. J. Hazard. Mater. 2012, 229, 15.
Chelucci, G.; Baldino, S.; Ruiu, A. J. Org. Chem. 2012, 77, 9921.
doi: 10.1021/jo3019335
Kashihara, M.; Yadav, M. R.; Nakao, Y. Org. Lett. 2018, 20, 1655.
doi: 10.1021/acs.orglett.8b00430
Deng, G.; Chen, J.; Sun, W.; Bian, K.; Jiang, Y.; Loh, T.-P. Adv. Synth. Catal. 2018, 360, 3900.
doi: 10.1002/adsc.201800823
Patra, T.; Agasti, S.; Akanksha; Maiti, D. Chem. Commun. 2013, 49, 69.
doi: 10.1039/c2cc36883h
Patra, T.; Agasti, S.; Modak, A.; Maiti, D. Chem. Commun. 2013, 49, 8362.
doi: 10.1039/c3cc44562c
Enthaler, S.; Weidauer, M.; Irran, E.; Epping, J. D.; Kretschmer, R.; Someya, C. I. J. Organomet. Chem. 2013, 745, 262.
Crawford, J. M.; Shelton, K. E.; Reeves, E. K.; Sadarananda, B. K.; Kalyani, D. Org. Chem. Front. 2015, 2, 726.
doi: 10.1039/C5QO00040H
(a) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2017, 139, 1416.
(b) Somerville, R. J.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 6708.
Ding, K.; Shi, X.; Alotaibi, R.; Paudel, K.; Reinheimer, E. W.; Weatherly, J. J. Org. Chem. 2017, 82, 4924.
doi: 10.1021/acs.joc.7b00284
Yu, R.; Chen, X.; Martin, S. F.; Wang, Z. Org. Lett. 2017, 19, 1808.
doi: 10.1021/acs.orglett.7b00579
Yue, H.; Guo, L.; Lee, S.-C.; Liu, X.; Rueping, M. Angew. Chem., Int. Ed. 2017, 56, 3972.
doi: 10.1002/anie.201612624
Dey, A.; Sasmal, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433.
doi: 10.1021/acscatal.6b03040
Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.
doi: 10.1021/jacs.7b11591
Herrmann, J. M.; Kö nig, B. Eur. J. Org. Chem. 2013, 2013, 7017.
doi: 10.1002/ejoc.201300657
Lipshutz, B. H.; Frieman, B. A.; Butler, T.; Kogan, V. Angew. Chem., Int. Ed. 2006, 45, 800.
doi: 10.1002/anie.200502887
Á lvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132, 17352.
doi: 10.1021/ja106943q
Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47, 2946.
doi: 10.1039/c0cc05169a
Cornella, J.; Gómez-Bengoa, E.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1997.
doi: 10.1021/ja311940s
Tobisu, M.; Morioka, T.; Ohtsuki, A.; Chatani, N. Chem. Sci. 2015, 6, 3410.
doi: 10.1039/C5SC00305A
Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439.
doi: 10.1126/science.1200437
Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 20226.
doi: 10.1021/ja3085912
Li, J.; Wang, Z.-X. Chem. Commun. 2018, 54, 2138.
doi: 10.1039/C7CC09668B
Cao, Z.-C.; Shi, Z.-J. J. Am. Chem. Soc. 2017, 139, 6546.
doi: 10.1021/jacs.7b02326
Barbero, N.; Martin, R. Org. Lett. 2012, 14, 796.
doi: 10.1021/ol2033306
Tobisu, M.; Nakamura, K.; Chatani, N. J. Am. Chem. Soc. 2014, 136. 5587.
Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R. Adv. Synth. Catal. 2006, 348, 2148.
doi: 10.1002/adsc.200600228
Fristrup, P.; Kreis, M.; Palmelund, A.; Norrby, P.-O.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 5206.
Gutmann, B.; Elsner, P.; Glasnov, T.; Roberge, D. M.; Kappe, C. O. Angew. Chem., Int. Ed. 2014, 53, 11557.
doi: 10.1002/anie.201407219
Monrad, R. N.; Madsen, R. J. Org. Chem. 2007, 72, 9782.
doi: 10.1021/jo7017729
Sun, Z.-M.; Zhang, J.; Manan, R. S.; Zhao, P. J. Am. Chem. Soc. 2010, 132, 6935.
doi: 10.1021/ja102575d
Whittaker, R. E.; Dong, G. Org. Lett. 2015, 17, 5504.
doi: 10.1021/acs.orglett.5b02911
Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 3174.
doi: 10.1021/ja810142v
Hooper, J. F.; Young, R. D.; Weller, A. S.; Willis, M. C. Chem.-Eur. J. 2013, 19, 3125.
doi: 10.1002/chem.201204056
Vandekerkhove, A.; Claes, L.; De Schouwer, F.; Van Goethem, C.; Vankelecom, I. F. J.; Lagrain, B.; De Vos, D. E. ACS Sustainable Chem. Eng. 2018, 6, 9218.
doi: 10.1021/acssuschemeng.8b01546
Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849.
doi: 10.1021/ja0103501
Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615.
doi: 10.1021/jo0492719
Mazziotta, A.; Madsen, R. Eur. J. Org. Chem. 2017, 2017, 5417.
Nishibayashi, Y.; Shinoda, A.; Miyake, Y.; Matsuzawa, H.; Sato, M. Angew. Chem., Int. Ed. 2006, 45, 4835.
doi: 10.1002/anie.200601181
Dai, X.-J.; Li, C.-J. J. Am. Chem. Soc. 2016, 138, 5433.
doi: 10.1021/jacs.6b02344
Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.
doi: 10.1021/ja9033582
You, T.; Wang, Z.; Chen, J.; Xia, Y. J. Org. Chem. 2017, 82, 1340.
doi: 10.1021/acs.joc.6b02222
Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584.
doi: 10.1039/C7CC01755C
Gooß en, L. J.; Thiel, W. R.; Rodríguez, N.; Linder, C.; Melzer, B. Adv. Synth. Catal. 2007, 349, 2241.
doi: 10.1002/adsc.200700223
Goossen, L. J.; Manjolinho, F.; Khan, B. A.; Rodríguez, N. J. Org. Chem. 2009, 74, 2620.
doi: 10.1021/jo802628z
Cahiez, G.; Moyeux, A.; Gager, O.; Poizat, M. Adv. Synth. Catal. 2013, 355, 790.
doi: 10.1002/adsc.201201018
Li, Z.; Fu, Z.; Zhang, H.; Long, J.; Songa, Y.; Cai, H. New J. Chem. 2016, 40, 3014.
doi: 10.1039/C5NJ02792F
Fichez, J.; Prestat, G.; Busca, P. Org. Lett. 2018, 20, 2724.
doi: 10.1021/acs.orglett.8b00930
Nakazawa, H.; Kamata, K.; Itazaki, M. Chem. Commun. 2005, 36, 4004.
Yang, Z.; Kumar, R. K.; Liao, P.; Liu, Z.; Li, X.; Bi, X. Chem. Commun. 2016, 52, 5936.
doi: 10.1039/C5CC10518H
Iwai, T.; Fujihara, T.; Tsuji, Y. Chem. Commun. 2008, 46, 6215.
Huang, J.-L.; Dai, X.-J.; Li, C.-J. Eur. J. Org. Chem. 2013, 2013, 6496.
doi: 10.1002/ejoc.201301293
Yang, S.; Tang, W.; Yang, Z.; Xu, J. ACS Catal. 2018, 8, 9320.
doi: 10.1021/acscatal.8b02495
Nguyen, J. D.; Matsuura, B. S.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 1218.
doi: 10.1021/ja4113462
Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Org. Lett. 2009, 11, 5710.
doi: 10.1021/ol902482p
Grainger, R.; Nikmal, A.; Cornella, J.; Larrosa, I. Org. Biomol. Chem. 2012, 10, 3172.
doi: 10.1039/c2ob25157d
Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2012, 48, 8270.
doi: 10.1039/c2cc33306f
Liao, R.-Z.; Chen, S.-L.; Siegbahn, P. E. M. ACS Catal. 2015, 5, 7350.
doi: 10.1021/acscatal.5b01502
Ren, Y.-L.; Tian, M.; Tian, X.-Z.; Wang, Q.; Shang, H.; Wang, J.; Zhang, Z. C. Catal. Commun. 2014, 52, 36.
doi: 10.1016/j.catcom.2014.03.036
(a) Zhang, L.; Koreeda, M. J. Am. Chem. Soc. 2004, 126, 13190.(b) Jordan, P. A.; Miller, S. J. Angew. Chem., Int. Ed. 2012, 51, 2907.
García, N.; García-García, P.; Fernández-Rodríguez, M. A.; Rubio, R.; Pedrosa, M. R.; Arnáiz, F. J.; Sanz, R. Adv. Synth. Catal. 2012, 354, 321.
doi: 10.1002/adsc.201100877
Sousa, S. C. A.; Fernandes, T. A.; Fernandes, A. C. Eur. J. Org. Chem. 2016, 2016, 3109.
doi: 10.1002/ejoc.201600441
(a) Dupuy, S.; Lazreg, F.; Slawin, A. M. Z.; Cazin, C. S. J.; Nolan, S. P. Chem. Commun. 2011, 47, 5455.
(b) Dupuy, S.; Nolan, S. P. Chem.-Eur. J. 2013, 19, 14034.
Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org. Chem. 2001, 66, 7741.
Miura, K.; Tomita, M.; Yamada, Y.; Hosomi, A. J. Org. Chem. 2007, 72, 787.
doi: 10.1021/jo061880o
Bauer, J. O.; Chakraborty, S.; Milstein, D. ACS Catal. 2017, 7, 4462.
doi: 10.1021/acscatal.7b01729
Zou, Y.-Q.; Chakraborty, S.; Nerush, A.; Oren, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2018, 8, 8014.
doi: 10.1021/acscatal.8b02902
Moseley, J. D.; Gilday, J. P. Tetrahedron 2006, 62, 4690.
doi: 10.1016/j.tet.2005.12.064
Diéguez, H. R.; López, A.; Domingo, V.; Arteaga, J. F.; Dobado, J. A.; Herrador, M. M.; Quílez del Moral, J. F.; Barrero, A. F. J. Am. Chem. Soc. 2010, 132, 254.
doi: 10.1021/ja906083c
Meyer, V. J.; Niggemann, M. Chem.-Eur. J. 2012, 18, 4687.
doi: 10.1002/chem.201103691
Li, P.; Ma, N.; Wang, Z.; Dai, Q.; Hu, C. J. Org. Chem. 2018, 83, 8233.
doi: 10.1021/acs.joc.8b00970
Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179.
doi: 10.1021/jo000726d
Chandrasekhar, S.; Reddy, C. R.; Babu, B. N. J. Org. Chem. 2002, 67, 9080.
doi: 10.1021/jo0204045
Milne, J. E.; Storz, T.; Colyer, J. T.; Thiel, O. R.; Seran, M. D.; Larsen, R. D.; Murry, J. A. J. Org. Chem. 2011, 76, 9519.
Wang, Y. P.; Liu, Y. H.; Ruan, R. S.; Wan, Y. Q.; Zhang, J. S.; Peng, H. Acta Chim. Sinica 2012, 70, 114(in Chinese).
doi: 10.3969/j.issn.0251-0790.2012.01.019
Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340.
doi: 10.1021/jacs.5b07770
Yang, W.; Gao, L.; Lu, J.; Song, Z. Chem. Commun. 2018, 54, 4834.
doi: 10.1039/C8CC01163J
Liu, D.; Sun, J.; Simmons, B. A.; Singh, S. ACS Sustainable Chem. Eng. 2018, 6, 7232.
doi: 10.1021/acssuschemeng.7b03612
Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K. Org. Biomol. Chem. 2018, 16, 1200.
doi: 10.1039/C7OB02834B
Fukuyama, T.; Fujita, Y.; Miyoshi, H.; Ryu, I.; Kao, S.-C.; Wu, Y.-K. Chem. Commun. 2018, 54, 5582.
doi: 10.1039/C8CC02445F
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066