Citation: Li Xinmin, Hu Rui, Chen Zhengjun, Hu Qinghong, Yuan Zeli. Preparation of Biaryl Fluorosulfates by a Tandem Process[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2135-2141. doi: 10.6023/cjoc202002034 shu

Preparation of Biaryl Fluorosulfates by a Tandem Process

  • Corresponding author: Li Xinmin, lixm@zmu.edu.cn Yuan Zeli, zlyuan@zmu.edu.cn
  • Received Date: 25 February 2020
    Revised Date: 26 April 2020
    Available Online: 11 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 81660575, 81360471), the Natural Science and Technology Foundation of Guizhou Province (No. [2018]1187), and the International Cooperation Project of Guizhou Province (No. [2020]4104)the Natural Science and Technology Foundation of Guizhou Province [2018]1187the International Cooperation Project of Guizhou Province [2020]4104the National Natural Science Foundation of China 81660575the National Natural Science Foundation of China 81360471

  • The one-pot tandem protocol for the preparation of biaryl fluorosulfates from bromo phenols was developed. Using Pd/C as catalyst, K2CO3 as base and aqueous ethanol as solvent, the Suzuki reaction was carried out at room temperature, then SO2F2 gas was added to the mixture to afford biaryl fluorosulfates product. The intermediate was not isolated, and phosphine ligand and nitrogen protection were not required during the reaction, which made the protocol more convenient to operate. The one-pot protocol could tolerate a range of functional groups and provided a highest product yield up to 97.2% at room temperature. Furthermore, Pd/C catalyst could be recycled and reused three times without significant loss of catalytic activity
  • 加载中
    1. [1]

      Liu, Z.; Li, J.; Li, S.; Li, G.; Sharpless, K. B.; Wu, P. J. Am. Chem. Soc. 2018, 140, 2919.  doi: 10.1021/jacs.7b12788

    2. [2]

      (a) Revathi, L.; Ravindar, L.; Leng, J.; Rakesh, K. P.; Qin, H.-L. Asian J. Org. Chem. 2018, 7, 662.
      (b) Ravindar, L.; Bukhari, S.; Rakesh, K.; Manukumar, H.; Vivek, H.; Mallesha, N.; Xie, Z. Z.; Qin, H. L. Bioorg. Chem. 2018, 81, 107.

    3. [3]

      Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430.  doi: 10.1002/anie.201309399

    4. [4]

      Veryser, C.; Demaerel, J.; Bieliuunas, V.; Gilles, P.; De Borggraeve, W. M. Org. Lett. 2017, 19, 5244.

    5. [5]

      Zhou, H.; Mukherjee, P.; Liu, R.; Evrard, E.; Wang, D.; Humphrey, J. M.; Butler, T. W.; Hoth, L. R.; Sperry, J. B.; Sakata, S. K.; Helal, C. J.; Am Ende, C. W. Org. Lett. 2018, 20, 812.  doi: 10.1021/acs.orglett.7b03950

    6. [6]

      Guo, T.; Meng, G.; Zhan, X.; Yang, Q.; Ma, T.; Xu, L.; Sharpless, K. B.; Dong, J. Angew. Chem., Int. Ed. 2018, 57, 2605.

    7. [7]

    8. [8]

    9. [9]

      (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
      (b) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.

    10. [10]

      (a) Hirakawa, T.; Uramoto, Y.; Mimura, D.; Takeda, A.; Yanagi- sawa, S.; Ikeda, T.; Inagaki, K.; Morikawa, Y. J. Phys. Chem. B 2017, 121, 164.
      (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
      (c) Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116.
      (d) Amatore, C.; Duc, G. L.; Jutand, A. Chem.-Eur. J. 2013, 19, 10082.

    11. [11]

      (a) Fu, L.; Cao, X.; Wan, J.; Liu, Y. Chin. J. Chem. 2020, 38, 254.
      (b) Deraedt, C.; Astruc, D. Acc. Chem. Res. 2014, 47, 494.

    12. [12]

      (a) Peng, L.; Hu, Z.; Tang, Z.; Jiao, Y.; Xu, X. Chin. Chem. Lett. 2019, 30, 1481.
      (b) Xiong, J.; Zhong, G.; Zou, L.; Liu, Y. ChemistrySelect 2018, 3, 8291.
      (c) Chen, X.; Hu, C.; Wan, J. P.; Liu, Y. Tetrahedron Lett. 2016, 57, 5116.
      (d) Buchspies, J.; Szostak, M. Catalysts 2019, 9, 53.

    13. [13]

      (a) Campeau, L. C.; Hazari, N. Organometallics 2019, 38, 3.
      (b) Liu, C.; Li, X. Chem. Rec. 2016, 16, 84.

    14. [14]

      Liu, C.; Liu, C.; Li, X. M.; Gao, Z. M.; Jin, Z. L. Chin. Chem. Lett. 2016, 5, 631.

    15. [15]

      Ma, C.; Zhao, C. Q.; Xu, X. T.; Li, Z. M.; Wang, X. Y.; Zhang, K.; Mei, T. S. Org. Lett. 2019, 21, 2464.  doi: 10.1021/acs.orglett.9b00836

    16. [16]

      Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.; Jansma, M. J.; Bland, D. C.; Sanford, M. S. J. Am. Chem. Soc. 2017, 139, 1452.  doi: 10.1021/jacs.6b12911

    17. [17]

      Li, X.; Feng, F.; Ren, C.; Teng, Y.; Hu, Q.; Yuan, Z. Synlett 2019, 30, 2131.  doi: 10.1055/s-0039-1690227

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    3. [3]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    4. [4]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    5. [5]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    8. [8]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    9. [9]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    10. [10]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    11. [11]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    12. [12]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    13. [13]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

Metrics
  • PDF Downloads(9)
  • Abstract views(1391)
  • HTML views(231)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return