Citation: Li Mengfan, Wang Rong, Hao Wenjuan, Jiang Bo. Electrocatalytic Synthesis of 2, 5-Disubstituted 1, 3, 4-Oxadiazoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1540-1548. doi: 10.6023/cjoc202002029 shu

Electrocatalytic Synthesis of 2, 5-Disubstituted 1, 3, 4-Oxadiazoles

  • Corresponding author: Jiang Bo, jiangchem@jsnu.edu.cn
  • Received Date: 23 February 2020
    Revised Date: 26 March 2020
    Available Online: 10 April 2020

    Fund Project: the National Natural Science Foundation of China 21971090the Postgraduate Research Innovation Program of Jiangsu Province SJKY19_2003Project supported by the National Natural Science Foundation of China (No. 21971090), and the Postgraduate Research Innovation Program of Jiangsu Province (No. SJKY19_2003)

Figures(3)

  • 1, 3, 4-Oxadiazoles, standing for a class of five-membered heterocyclic compounds with multiple heteroatoms, show anti-inflammatory, anti-convulsant, anti-inositol and other biological activities. They also served as important intermediates in organic synthesis. Thus, the development of general and straightforward methods for their synthesis is of great significance. In this paper one-step synthesis of non-symmetric 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives with good yield was completed under electrocatalytic conditions by using cheap and readily available aldehydes and hydrazides as starting materials. Their structures were confirmed by IR, 1H NMR, 13C NMR and HRMS analyses. The reaction features mild conditions, high atom-economy and wide substrate scope, providing a green and sustainable synthetic protocol for constructing 1, 3, 4-oxadiazole skeleton.
  • 加载中
    1. [1]

      (a) Yan, M.; Kawamata Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
      (b) Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J. S.; Xu, H. C. Angew. Chem., Int. Ed. 2016, 55, 9168.
      (c) Tang, S.; Liu, Y.; Lei, A. Chem. 2018, 4, 27.
      (e) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8, 7086.

    2. [2]

      (a) Huang, X.; Zhang, Q.; Lin, J.; Harms, K.; Meggers, E. Nat. Catal. 2019, 2, 34.
      (b) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
      (c) Yoshida, J. I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
      (d) Chen, J.-Y.; Wu, H.-Y.; Gui, Q.-W.; Han, X.-R.; Wu, Y.; Du, K.; Cao, Z.; Lin, Y.-W.; He, W.-M. Org. Lett. 2020, 22, 2206.

    3. [3]

      (a) Liu, S.; Chen, K.; Hao, W.-J.; Tu, X.-C.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2019, 84, 1964.
      (b) Gui, Q.-W.; He, X.; Wang, W.; Zhou, H.; Dong, Y.; Wang, N.; Tang, J.-X.; Cao, Z.; He, W.-M., Green Chem. 2020, 22, 118.
      (c) Cao, Z.; Zhu, Q.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2132.
      (d) Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.
      (e) Sun, K.; Li, Y.; Feng, R.; Mu, S.; Wang, X.; Zhang, B. J. Org. Chem. 2020, 85, 1001.
      (f) Wang, L.; Zhang, M.; Zhang, Y.; Liu, Q.; Zhao, X.; Li, J.-S.; Luo, Z.; Wei, W. Chin. Chem. Lett. 2020, 31, 67.

    4. [4]

      (a) Jin, Z. Nat. Prod. Rep. 2003, 20, 584.
      (b) Bostrom, J.; Hogner, A.; Llinas, A.; Wellner, E.; Plowright, A. T. J. Med. Chem. 2012, 55, 1817.

    5. [5]

      (a) Amir, M.; Shikha, K. Eur. J. Med. Chem. 2004, 39, 535.
      (b) Cherala, S.; Lingabathula, H.; Ganta, R.; Ampati, S.; Manda, S. J. Chem. 2012, 9, 2510.
      (c) Roger, T. W.; Roger, J.; Robert, W. J. Med. Chem. 1991, 34, 2060.
      (d) Gilbert, W.; Adelstein, C.; Esam, Z.; Bianchi, R. G. J. Med. Chem. 1976, 19, 1221.
      (e) Valente, S.; Trisciuoglio, D.; Luca, T. D.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Bufalo, D. D.; Altucci, L.; Mai, A. J. Med. Chem. 2014, 57, 6259.
      (f) Kiselyov, A. S.; Semenova, M. N.; Chernyshova, N. B.; Leitao, A.; Samet, A. V.; Kislyi, K. A.; Raihstat, M. M.; Oprea, T.; Lemcke, H.; Lantow, M.; Weiss, D. G.; Ikizalp, N. N.; Kuznetsov, S. A.; Semenov, V. V. Eur. J. Med. Chem. 2010, 45, 1683.
      (g) Jonathan, F. M.; John, P.; Kenneth, R.; John, S. J. Med. Chem. 1995, 38, 3514.
      (h) Adelstein, G. W. J. Med. Chem. 1973, 16, 309.
      (i) Zheng, X.; Li, Z.; Wang, Y.; Chen, W.; Huang, Q.; Liu, C.; Song, G. J. Fluorine Chem. 2003, 123, 163.

    6. [6]

      Ogata, M.; Kushida, H.; Yamamoto, K. J. Antibiot. 1971, 24, 443.  doi: 10.7164/antibiotics.24.443

    7. [7]

      Rainer, S. Tetrahedron Lett. 1988, 44, 3289.  doi: 10.1016/S0040-4020(01)85962-7

    8. [8]

      Vincenzo, S.; Fabio, B. J. Med. Chem. 2008, 51, 5843.  doi: 10.1021/jm800245z

    9. [9]

      (a) Dobrotă, C.; Paraschivescu, C. C.; Dumitru, I.; Matache, M.; Baciu, I.; Ruţă, L. L. Tetrahedron Lett. 2009, 50, 1886.
      (b) Prabhu, G.; Sureshbabu, V. V. Tetrahedron Lett. 2012, 53, 4232.
      (c) Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Tetrahedron Lett. 2006, 47, 6983.
      (d) Gao, P.; Wang, J.; Bai, Z.; Cheng, H.; Xiao, J.; Lai, M.; Yang, D.; Fan, M. Tetrahedron Lett. 2016, 57, 4616.
      (e) Jedlovská, E.; Leško, J.; Synth. Commun. 1994, 24, 1879.
      (f) Zhang, L.; Zhao, X.; Jing, X.; Zhang, X.; Lü, S.; Luo, L.; Jia, X. Tetrahedron Lett. 2016, 57, 5669.
      (g) Majji, G.; Rout, S. K.; Guin, S.; Gogoi, A.; Patel, B. K. RSC Adv. 2014, 4, 5357.
      (h) Shang, Z.; Reiner, J.; Chang, J.; Zhao, K. Tetrahedron Lett. 2005, 46, 2701.
      (i) Guin, S.; Ghos, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2011, 13, 5976.
      (j) Jiang, H. F.; Li, X. W.; Pan, X. Y.; Zhou. P. Pure Appl. Chem. 2012, 84, 553.
      (k) Chen, X.; Jia, F. C.; Cai, Q.; Li, D. K.; Zhou, Z. W.; Wu, A. X. Chem. Commun. 2015, 51, 6629.
      (l) Yu, W. Q.; Huang, G.; Zhang, Y. T.; Liu, H. X.; Dong, L. H.; Yu, X. J.; Li, Y. J.; Chang, J. B. J. Org. Chem. 2013, 78, 10337.
      (m) Niu, P. F.; Kang, J. F.; Tian, X. H.; Song, L. N.; Liu, H, X.; Wu, J.; Yu, W. Q.; Chang. J. B. J. Org. Chem. 2015, 80, 1018.

    10. [10]

      (a) Jiang, Q.; Qi, X.; Zhang, C.; Ji, X.; Li, J. Liu, R. Org. Chem. Front. 2018, 5, 386.
      (b) Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Pate. B. K. Org. Lett. 2011, 13, 5976.

    11. [11]

      Zarudnitskii, E. V.; Pervak, I. I.; Merkulov, A. S.; Yurochenko, A. A. Tetrahedron Lett. 2008, 64, 10431.  doi: 10.1016/j.tet.2008.08.040

    12. [12]

      Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh T.; Miura, M. Org. Lett. 2009, 11, 3072.  doi: 10.1021/ol9011212

    13. [13]

      (a) Al-Talib, M.; Tashtoush, H.; Odeh, N. Synth. Commun. 1990, 20, 1811.
      (b) Kerr, V. N.; Ott, D. G.; Hayes, F. N. J. Am. Chem. Soc. 1960, 82, 186.
      (c) Short, F. W.; Long, L. M. J. Heterocycl. Chem. 1969, 6, 707.
      (d) Klingsberg, E. J. Am. Chem. Soc. 1958, 80, 5786.
      (e) Reddy, C. K.; Reddy, P. S. N.; Ratnam, C. V. Synthesis. 1983, 842.
      (f) Pouliot, M. F.; Angers, L.; Hamel, J. D.; Paquin, J. F. Org. Biomol. Chem. 2012, 10, 988.

    14. [14]

      (a) Tandon, V. K.; Chhor, R. B. Synth. Commun. 2001, 31, 1727.
      (b) Mashraqui, S. H.; Ghadigaonkar, S. G.; Kenny, R. S. Synth. Commun. 2003, 33, 2541.
      (c) Bentiss, F.; Lagrenee, M.; Barbry, D. Synth. Commun. 2001, 31, 935.
      (d) Kangani, C. O.; Kelley, D. E.; Day, B. W. Tetrahedron Lett. 2006, 47, 6497.
      (e) Yadav, Arvind K.; Yadav, Lal Dhar S. Tetrahedron Lett. 2014, 55, 2065.
      (f) Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Tetrahedron Lett. 2006, 47, 6983.

    15. [15]

      Singh, S.; Sharma, L. K.; Saraswat, A.; Siddiqui, I. R.; Singh, R. K. P. Res. Chem. Intermed. 2014, 40, 947.  doi: 10.1007/s11164-012-1013-z

    16. [16]

      (a) Hao, W. J.; Wu, Y. N.; Gao, Q.; Wang, S. L.; Tu, S. J.; Jiang, B. Tetrahedron Lett. 2016, 57, 4767.
      (b) Chen, K.; Xu, T.; Liang, J.; Zhou, M.; Zhang, J.; Hao, W. J.; Wang, J. Y.; Tu, S. J.; Jiang, B. Chem. Commun. 2019, 21, 9784.
      (c) Zhang, T. S.; Zhang, H. P.; Fu, R.; Wang, J. Y.; Hao, W. J.; Tu, S. J.; Jiang, B. Chem. Commun. 2019, 55, 13231.
      (d) Ji, C. L.; Hao, W. J.; Zhang, J.; Geng, F. Z.; Xu, T.; Tu, S. J.; Jiang, B. Org. Lett. 2019, 21, 6494.
      (e) Qin, X. Y.; He, L.; Li, J.; Hao, W. J.; Tu, S. J.; Jiang, B. Chem. Commun. 2019, 55, 3227.

    17. [17]

      (a) Long, H.; Song, J.; Xu, H. Org. Chem. Front. 2018, 5, 3129.
      (b) Hou, Z. W.; Yan, H.; Song, J. S.; Xu, H. C. Chin. J. Chem. 2018, 36, 909.
      (c) Xiong, P.; Xu, H. C. Acc. Chem. Res. 2019, 52, 3339.

    18. [18]

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    7. [7]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    8. [8]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    9. [9]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    10. [10]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    19. [19]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    20. [20]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

Metrics
  • PDF Downloads(16)
  • Abstract views(1018)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return