Citation: Dong Daoqing, Li Guanghui, Chen Demao, Sun Yuanyuan, Han Qingqing, Wang Zuli, Xu Xinming, Yu Xianyong. Metal-Free C-2 Alkylation of N-Oxides with Ethers via Radical Cross-Coupling Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1766-1771. doi: 10.6023/cjoc202002002 shu

Metal-Free C-2 Alkylation of N-Oxides with Ethers via Radical Cross-Coupling Reactions

  • Corresponding author: Wang Zuli, wangzulichem@163.com
  • 共同第一作者(These authors contributed equally to this work).
  • Received Date: 1 February 2020
    Revised Date: 1 March 2020
    Available Online: 6 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772107), and the Shandong Provincal Key Research and Development Plan (No. 2019GSF108017)the Shandong Provincal Key Research and Development Plan 2019GSF108017the National Natural Science Foundation of China 21772107

Figures(3)

  • The C-2 alkylation of ethers and N-oxides was achieved via free radical coupling reaction under metal-free conditions. The reaction conditions are mild, and the desired products can be obtained in medium to high yields with the addition of the oxidant di-tert-butyl peroxide (DTBP).
  • 加载中
    1. [1]

      Mamedov, V. A.; Zhukova, N. A. Prog. Heterocycl. Chem. 2012, 24, 55.  doi: 10.1016/B978-0-08-096807-0.00002-6

    2. [2]

      Xie, L. Y.; Peng, S.; Liu, F.; Yi, J. Y.; Wang, M.; Tang, Z.; Xu, X.; He, W. M. Adv. Synth. Catal. 2018, 360, 4259.  doi: 10.1002/adsc.201800918

    3. [3]

      Shi, L.; Hu, W.; Wu, J.; Zhou, H.; Zhou, H.; Li, X. Mini-Rev. Med. Chem. 2018, 18, 392.  doi: 10.2174/1389557517666171101111134

    4. [4]

      Liang, Q.; Zhang, Y.; Zeng, M.; Guan, L.; Xiao, Y.; Xiao, F. Toxicol Res. 2018, 7, 521.  doi: 10.1039/C8TX00029H

    5. [5]

      Tao, S.; Li, L.; Yu, J. S.; Jiang, Y. D.; Zhou, Y. C.; Lee, C. S.; Lee, S. T.; Zhang, X. H.; Kwon, O. Chem. Mater. 2009, 21, 1284.  doi: 10.1021/cm803087c

    6. [6]

      (a) Yu, Q.; Yang, Y.; Wan, J.; Liu, Y. J. Org. Chem. 2018, 83, 11385.
      (b) Cao, Z.; Zhu, Q.; Lin, Y. W.; He, W. M. Chin. Chem. Lett. 2019, 30, 2132.

    7. [7]

      Jiang, H.; Tang, X.; Xu, Z.; Wang, H.; Han, K.; Yang, X.; Zhou, Y.; Feng, Y.; Yu, X.; Gui, Q. Org. Biomol. Chem. 2019, 17, 2715.  doi: 10.1039/C8OB02992J

    8. [8]

      (a) Yang, W.; Li, B.; Zhang, M.; Wang, S.; Ji, Y.; Dong, S.; Feng, J.; Yuan, S. Chin. Chem. Lett. 2020, 31, 1313.
      (b) Yang, D.; Sun, P.; Wei, W.; Liu, F.; Zhang, H.; Wang, H. Chem.-Eur. J. 2018, 24, 4423.

    9. [9]

      Yang, D.; Li, G.; Xing, C.; Cui, W.; Li, K.; Wei, W. Org. Chem. Front. 2018, 5, 2974.

    10. [10]

      (a) Watson, B. T.; Christiansen, G. E. Tetrahedron Lett. 1998, 39, 9839.
      (b) Xiao, B.; Liu, Z.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 616.
      (c) Gu, Y.; Duan, X.; Yang, L.; Guo, L. Org. Lett. 2017, 19, 5908.
      (d) Zhang, W.; Dai, J.; Xu, J.; Xu, H. J. Org. Chem. 2017, 82, 2059.

    11. [11]

      (a) Wu, J.; Xiang, S.; Zeng, J.; Leow, M.; Liu, X. W. Org. Lett. 2015, 17, 222.
      (b) Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124(in Chinese). (余海洋, 皮超, 王勇, 崔秀灵, 吴养洁, 有机化学, 2018, 38, 124.)

    12. [12]

      Guan, M.; Pang, Y.; Zhang, J.; Zhao, Y. Chem. Commun. 2016, 52, 7043.  doi: 10.1039/C6CC02865A

    13. [13]

      Ikbal, M.; Banerjee, R.; Atta, S.; Jana, A.; Dhara, D.; Anoop, A.; Singh, N. D. P. Chem.-Eur. J. 2012, 18, 11968.  doi: 10.1002/chem.201104065

    14. [14]

      Yan, G. B.; Borah, A. J.; Yang, M. H. Adv. Synth. Catal. 2014, 356, 2375.  doi: 10.1002/adsc.201400203

    15. [15]

      Wang, Y. L.; Zhang, L. M. Synthesis 2015, 47, 289.  doi: 10.1055/s-0034-1379884

    16. [16]

      (a) Xie, L. Y.; Li, Y. J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K. J.; Cao, Z.; He, W. M. Green Chem. 2017, 19, 5642.
      (b) Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.

    17. [17]

      (a) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 8325.
      (b) Xie, L. Y.; Peng, S.; Tan, J. X.; Sun, R. X.; Yu, X.; Dai, N. N.; Tang, Z. L.; Xu, X.; He, W. M. ACS Sustainable Chem. Eng. 2018, 6, 16976.

    18. [18]

      Xie, L. Y.; Peng, S.; Liu, F.; Liu, Y. F.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 7193.  doi: 10.1021/acssuschemeng.9b00200

    19. [19]

      (a) Xie, L. Y.; Peng, S.; Liu, F.; Chen, G. R.; Xia, W.; Yu, X. Y.; Li, W. F.; Cao, Z.; He, W. M. Org. Chem. Front. 2018, 5, 2604.
      (b) Xie, L. Y.; Peng, S.; Fan, T. G.; Liu, Y. F.; Sun, M.; Jiang, L. L.; Wang, X. X.; Cao, Z.; He, W. M. Sci. China Chem. 2019, 62, 460.
      (c) Xie, L. Y.; Duan, Y.; Lu, L. H.; Li, Y. J.; Peng, S.; Wu, C.; Liu, K. J.; Wang, Z.; He, W. M. ACS Sustainable Chem. Eng. 2017, 5, 10407.

    20. [20]

      Du, S. D.; Pi, C.; Wan, T.; Wu, Y. J.; Cui, X. L. Adv. Synth. Catal. 2019, 361, 1766.  doi: 10.1002/adsc.201801433

    21. [21]

      Chen, X. P.; Cui, X. L.; Yang, F. F.; Wu, Y. J. Org. Lett. 2015, 17, 1445.

    22. [22]

      Zhang, Q. W.; Hartwig, J. F. Chem. Commun. 2018, 54, 10124.  doi: 10.1039/C8CC05084H

    23. [23]

      Chen, X. P.; Yang, F. F.; Cui, X. L.; Wu, Y. J. Adv. Synth. Catal. 2017, 359, 3922.  doi: 10.1002/adsc.201700931

    24. [24]

      Sena, C.; Ghosh, S. C. Adv. Synth. Catal. 2018, 360, 905.

    25. [25]

      Wang, H.; Cui, X. L.; Pei, Y.; Zhang, Q. Q.; Bai, J.; Wei, D. H.; Wu, Y. J. Chem. Commun. 2014, 50, 14409.  doi: 10.1039/C4CC07060G

    26. [26]

      Su, Y.; Zhou, X. J.; He, C. L.; Zhang, W.; Ling, X.; Xiao, X. J. Org. Chem. 2016, 81, 4981.  doi: 10.1021/acs.joc.6b00475

    27. [27]

      Xie, L. Y.; Qu, J.; Peng, S.; Liu, K. J.; Wang, Z.; Ding, M. H.; Wang, Y.; Cao, Z.; He, W. M. Green Chem. 2018, 20, 760.  doi: 10.1039/C7GC03106H

    28. [28]

      Zhang, Y.; Zhang, S. W.; Xu, G. X.; Li, M.; Tang, C. L.; Fan, W. Z. Org. Biomol. Chem. 2019, 17, 309.  doi: 10.1039/C8OB02844C

    29. [29]

      Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134.  doi: 10.1021/acs.orglett.5b01456

    30. [30]

      Han, Y. P.; Li, X. S.; Zhu, X. Y.; Li, M.; Zhou, L.; Song, X. R.; Liang, Y. M. J. Org. Chem. 2017, 82, 1697.  doi: 10.1021/acs.joc.6b02882

    31. [31]

      (a) Wei, W.; Cui, H.; Yang, D.; Liu, X.; He, C.; Dai, S.; Wang, H. Org. Chem. Front. 2017, 4, 26.
      (b) Li, L. X.; Dong, D. Q.; Hao, S. H; Wang, Z. L. Tetrahedron Lett. 2018, 59, 1517.
      (c) Liu, K. J.; Duan, Z. H.; Zeng, X. L.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 10293.
      (d) Xie, L. Y.; Peng, S.; Jiang, L. L.; Peng, X.; Xia, W.; Yu, X.; Wang, X. X.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 6, 167.

    32. [32]

      (a) Li, H.; Lia, B. J.; Shi, Z. J. Catal. Sci. Technol. 2011, 1, 191.
      (b) Zhu, Z.; Xiao, L.; Xie, Z.; Le, Z. Chin. J. Org. Chem. 2019, 39, 2345(in Chinese). (祝志强, 肖利金, 谢宗波, 乐长高, 有机化学, 2019, 39, 2345.)

    33. [33]

      Hu, H.; Chen, X. L.; Sun, K.; Wang, J. C.; Liu, Y.; Liu, H.; Yu, B.; Sun, Y. Q.; Qu, L. B.; Zhao, Y. F. Org. Lett. 2018, 20, 6157.  doi: 10.1021/acs.orglett.8b02627

    34. [34]

      Yang, G. P.; Wu, X.; Yu, B.; Hu, C. W. ACS Sustainable Chem. Eng. 2019, 7, 3727.  doi: 10.1021/acssuschemeng.8b06445

    35. [35]

      Dong, D. Q.; Gao, X.; Li, L. X.; Hao, S. H.; Wang, Z. L. Res. Chem. Intermed. 2018, 44, 7557.  doi: 10.1007/s11164-018-3573-z

    36. [36]

      Anas, S.; Cordib, A.; Kagan, H. B. Chem. Commun. 2011, 47, 11483.  doi: 10.1039/c1cc14292e

    37. [37]

      Yang, G. P.; Wu, X.; Yu, B.; Hu, C. W. ACS Sustainable Chem. Eng. 2019, 7, 3727

    38. [38]

      Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.  doi: 10.1039/c1cs15082k

    39. [39]

      (a) Dong, D. Q.; Hao, S. H.; Wang, Z. L. Mini-Rev. Org. Chem. 2017, 14, 130.
      (b) Yang, W.-C.; Feng, J.-G.; Wu, L.; Zhang, Y.-Q. Adv. Synth. Catal. 2019, 361, 1700.

    40. [40]

      Kong, S. S.; Zhang, L. Q.; Dai, X. L.; Tao, L. Z.; Xie, C. S.; Shi, L.; Wang, M. Adv. Synth. Catal. 2015, 357, 2453.  doi: 10.1002/adsc.201500096

    41. [41]

      Zhang, Y. H.; Li, C. J. Angew. Chem., Int. Ed. 2006, 45, 1949.  doi: 10.1002/anie.200503255

    42. [42]

      Song, Y.; He, X.; Yu, B.; Li, H. R.; He, L. N. Chin. Chem. Lett. 2020, 31, 667.  doi: 10.1016/j.cclet.2019.07.053

    43. [43]

      Muramatsu, W.; Nakano, K. Org. Lett. 2014, 16, 2042.  doi: 10.1021/ol5006399

    44. [44]

      Wu, Z. Y.; Pi, C.; Cui, X. L.; Bai, J.; Wu, Y. J. Adv. Synth. Catal. 2013, 355, 1971.  doi: 10.1002/adsc.201300111

    45. [45]

      Li, Z. P.; Yu, R.; Li, H. J. Angew. Chem., Int. Ed. 2008, 47, 7497.

    46. [46]

      Chen, L.; Shi, E.; Liu, Z. J.; Chen, S. L.; Wei, W.; Li, H.; Xu, K.; Wan, X. B. Chem.-Eur. J. 2011, 17, 4085.  doi: 10.1002/chem.201100192

    47. [47]

      Kumar, G. S.; Pieber, B.; Reddy, K. R.; Kappe, C. O. Chem.-Eur. J. 2012, 18, 6124.  doi: 10.1002/chem.201200815

    48. [48]

      Sun, W.; Xie, Z. G.; Liu, J.; Wang, L. Org. Biomol. Chem. 2015, 13, 4596.  doi: 10.1039/C5OB00237K

    49. [49]

      (a) Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis 2019, 51, 3313.
      (b) Dong, D. Q.; Chen, W. J.; Chen, D. M.; Li, L. X.; Li, G. H.; Wang, Z. L.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, 3190(in Chinese). (董道青, 陈文静, 陈德茂, 李丽霞, 李光辉, 王祖利, 邓企, 龙姝, 有机化学, 2019, 39, 3190.)
      (c) Yan, S.; Dong, D.-Q.; Xie, C.; Wang, W.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 2560(in Chinese). (颜世强, 董道青, 解春文, 王文笙, 王祖利, 有机化学, 2019, 39, 2560.)
      (d) Dong, D.-Q.; Gao, X.; Li, L.-X.; Hao, S.-H.; Wang, Z.-L. Res. Chem. Intermed. 2018, 44, 7557.

    50. [50]

      Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480.  doi: 10.1002/slct.201900060

    51. [51]

      Dong, D.-Q.; Zhang, H.; Wang, Z.-L. RSC Adv. 2017, 7, 3780.  doi: 10.1039/C6RA26387A

    52. [52]

      Hao, S.-H.; Li, L.-X.; Dong, D.-Q.; Wang, Z.-L. Chin. J. Catal. 2017, 38, 1664.  doi: 10.1016/S1872-2067(17)62901-2

    53. [53]

      Hao, S. H.; Li, L. X.; Dong, D. Q.; Wang, Z. L.; Yu, X. Y. Tetrahedron Lett. 2018, 59, 4073.  doi: 10.1016/j.tetlet.2018.10.001

    54. [54]

      Dong, D. Q.; Hao, S. H.; Zhang, H.; Wang, Z. L. Chin. Chem. Lett. 2017, 28, 1597.  doi: 10.1016/j.cclet.2017.03.008

    55. [55]

      (a) Dong, D. Q.; Li, L. X.; Li, G. H.; Deng, Q.; Wang, Z. L.; Long, S. Chin. J. Catal. 2019, 40, 1494.
      (b) Han, Q. Q.; Li, G. H.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Yu, X.-Y.; Xu, X.-M. Tetrahedron Lett. 2020, 151704.

    56. [56]

      (a) Chen, W.; Zhang, Y.; Li, P.; Wang, L. Org. Chem. Front. 2018, 5, 855.
      (b) Xie, L. Y.; Fang, T. G.; Tan, J. X.; Zhang, B.; Cao, Z.; Yang, L. H.; He, W. M. Green Chem. 2019, 21, 3858.
      (c) Peng, S.; Song, Y.; He, J.; Tang, S.; Tan, J.; Cao, Z.; Lin, Y.; He, W. Chin. Chem. Lett. 2019, 30, 2287.

    57. [57]

      Yang, L.; Lu, W.; Zhou, W.; Zhang, F. Green Chem. 2016, 18, 2941.  doi: 10.1039/C6GC00362A

    58. [58]

      Huang, R.; Xie, C. S.; Huang, L.; Liu, J. H. Tetrahedron 2013, 69, 577.  doi: 10.1016/j.tet.2012.11.020

    59. [59]

      Wu, Z. Y.; Pi, C.; Cui, X. L.; Bai, J.; Wu, Y. G. Adv. Synth. Catal. 2013, 355, 1971.  doi: 10.1002/adsc.201300111

  • 加载中
    1. [1]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    2. [2]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    3. [3]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    4. [4]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    5. [5]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    6. [6]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    7. [7]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    8. [8]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    9. [9]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    10. [10]

      Kai AnQinglong QiaoLoveleshSyed Ali Abbas AbediXiaogang LiuZhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786

    11. [11]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    12. [12]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    13. [13]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    14. [14]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    15. [15]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    16. [16]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    17. [17]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    18. [18]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    19. [19]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    20. [20]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

Metrics
  • PDF Downloads(3)
  • Abstract views(802)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return