Synthesis and Anti-tumor Activity of Novel Garcinol Analogs
- Corresponding author: Zhang Xinyan, xinyanzhangzh@126.com Chen Xin, xinchen@cczu.edu.cn
Citation:
Zhou Huiyuan, Wu Yanlin, Huang Dianhong, Zhang Mingting, Chen Huanming, Qian Mingcheng, Zhao Shuai, Zhang Xinyan, Chen Xin. Synthesis and Anti-tumor Activity of Novel Garcinol Analogs[J]. Chinese Journal of Organic Chemistry,
;2020, 40(6): 1578-1587.
doi:
10.6023/cjoc202001016
Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022.
doi: 10.1021/np030096l
Aggarwal, B. B.; Kunnumakkara, A. B. Molecular Targets and Therapeutic Use of Spices, World Scientific Publishing Co. Pte. Ltd., 2009, pp. 281~309.
Schobert, R.; Biersack, B. Chem. Biodiversity. 2019, 16, e1900366.
Aggarwal, S.; Das, S. N. Tumor. Biol. 2016, 37, 7175.
doi: 10.1007/s13277-015-4583-8
Ranjbarnejad, T.; Saidijam, M.; Tafakh, M. S.; Pourjafar, M.; Talebzadeh, F.; Najafi, R. Hum. Exp. Toxicol. 2017, 36, 692.
doi: 10.1177/0960327116660865
Li, F.; Shanmugam, M. K.; Chen, L. X.; Chatterjee, S.; Basha, J.; Kumar, A. P.; Kundu, T. K.; Sethi, G. Cancer Prev. Res. (Phila) 2013, 6, 843.
doi: 10.1158/1940-6207.CAPR-13-0070
Wang, J. H.; Wang, L. W..; Ho, C. T.; Zhang, K. S.; Liu, Q.; Zhao, H. J Agric. Food Chem. 2017, 65, 3675.
doi: 10.1021/acs.jafc.7b00346
Ahmad, A.; Wang, Z. W.; Wojewoda, C.; Ali, R.; Kong, D.; Maitah, M. Y.; Banerjee, S.; Bao, B.; Padhye, S.; Sarkar, F. H. Front. Biosci. 1492, 3, 1483.
Liu, C.; Ho, P. C.; Wong, F. C.; Sethi, G.; Wang, L. Z.; Goh, C. Cancer Lett. 2015, 362, 8.
doi: 10.1016/j.canlet.2015.03.019
Liao, C. H.; Ho, C. T.; Lin, J. K. Biochem. Biophys. Res. Commun. 2005, 329, 1306.
doi: 10.1016/j.bbrc.2005.02.110
Liao, C. H.; Sang, S. M.; Liang, Y. C.; Ho, C. T.; Lin, J. K. Mol. Carcinog. 2004, 41, 140.
doi: 10.1002/mc.20050
Zhou, X. Y.; Cao, J.; Han, C. M.; Li, S. W.; Zhang, C.; Du, Y, D.; Zhou, Q. Q.; Zhang, X. Y.; Chen, X. Bioorg. Chem. 2017, 71, 74.
doi: 10.1016/j.bioorg.2017.01.013
Cao, J.; Han, C. M.; Zhang, G. L.; Zhou, X. Y.; Li, S. W.; Du, Y. D.; Zhao, S.; Zhang, X. Y.; Chen, X. Chin. J. Org. Chem. 2017, 37, 8(in Chinese).
doi: 10.6023/cjoc201701017
Han, C. M.; Zhou, X. Y.; Cao, J.; Zhang, X. Y.; Chen, X. Bioorg. Chem. 2015, 60, 123.
doi: 10.1016/j.bioorg.2015.04.010
Chen, X.; Zhang, X. Y.; Lu, Y.; Shim, J. Y.; Sang, S. M.; Sun, Z.; Chen, X. X. Nutr. Cancer. 2012, 64, 1211.
doi: 10.1080/01635581.2012.718032
Socolsky, C.; Plietker, B. Chem.-Eur. J. 2015, 21, 3053.
doi: 10.1002/chem.201406077
Guttroff, C.; Baykal, A.; Wang, H. H.; Popella, P.; Kraus, F.; Biber, N.; Krauss, S.; Gotz, F.; Plietker, B. Angew. Chem., Int. Ed. 2017, 56, 15852.
doi: 10.1002/anie.201707069
Biber, N.; Mows, K.; Plietker, B. Nat. Chem. 2011, 3, 938.
doi: 10.1038/nchem.1170
Holzwarth, M.; Dieskau, A.; Tabassam, M.; Plietker, B. Angew. Chem. Int. Ed. 2009, 48, 7251.
doi: 10.1002/anie.200901930
Saba, S.; Brescia, A.; Kaloustian, M. Tetrahedron Lett. 1991, 32, 5031.
doi: 10.1016/S0040-4039(00)93420-8
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Jiahao Zeng , Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019
Fa Wang , Yu Chen , Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311
Zhanhui Yang , Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Xudong Liu , Huili Fan , Junping Xiao , Min Yang , Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072
Yiling Wu , Peiyao Jin , Shenyue Tian , Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034
Reagents and conditions: (a) NaH, isoprenyl bromide, EtOH, 0 ℃ to r.t., 15 h, then K2CO3, formaldehyde, r.t., 15 h, 60% yield. (b) methylmagnesium chloride, dimethyl 1, 3-acetonedicarboxylate, MeOH, 0 to 60 ℃, 15 h, 89% yield. (c) NaH, THF, then MeLi, 0 ℃; NaH, isoprenyl bromide, THF, 0 ℃ to r.t., 63% yield. (d) LiCl, CuI, methylmagnesium bromide, Me3SiCl, THF, -78 ℃, 96% yield. (e) Potassium tert-amylate (KOtAm), 1, 3-dimesitylimidazolin-2-ylidene hexafluorophosphate (SIMES*PF6) (10 mol%), Bu4N[Fe(CO)3(NO)] (10 mol%), LiH, isobutyl (2-methylbut-3-en-2-yl) carbonate, THF/methyl-t-butyl ether, 0 to 80 ℃, 44% yield. (f) KOBut, THF, 0 ℃, 80% yield. (g) Et3N, 4-(cyanocar-bonyl)-1, 2-phenylene diacetate, THF, r.t., 16 h, 76% yield. (h) K2CO3, MeOH, r.t., 1 h, 64% yield.
Reagents and conditions: (a) NaH, THF, then MeLi, 0 ℃; NaH, R1Br, 0 ℃ to r.t., for 7: 63% yield, for 12: 66% yield; (b) LiCl, CuI, methylmagnesium bromide, Me3SiCl, THF, -78 ℃. For 8: 96% yield; for 13: 91% yield; (c) NaH, allyl chloroformate, DMF, 0 ℃ to r.t., for 8a: 34% yield, 8b: 50% yield; for 13a: 32% yield, 13b: 63% yield; (d) Tris(dibenzylideneacetone)dipalladium(0)-chloroform [Pd2(dba)3-CHCl3] (5 mol%), tri(p-tolyl)phosphine, toluene, r.t., for 14: 73% yield, for 17: 75% yield. (e) KOBut, THF, 0 ℃, for 15: 81% yield, for 18: 72% yield; (f) Et3N, 4-(cyanocarbonyl)-1, 2-phenylene diacetate, THF, r.t., 16 h, for 16: 78% yield, for 19: 75% yield; (g) K2CO3, MeOH, r.t., 1 h, for 2: 69% yield, for 3: 58% yield.