Citation: Wang Shoufeng, Wang Wengui. Recent Advances of the Construction of Trifluoromethylated Quaternary Carbon Center[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1901-1911. doi: 10.6023/cjoc202001012 shu

Recent Advances of the Construction of Trifluoromethylated Quaternary Carbon Center

  • Corresponding author: Wang Shoufeng, chm_wangsf@ujn.edu.cn Wang Wengui, chm_wangwg@ujn.edu.cn
  • Received Date: 7 January 2020
    Revised Date: 24 March 2020
    Available Online: 10 April 2020

    Fund Project: the National Natural Science Foundation of China 31972850the Shandong Provincial Key Research Program 2019GSF108223Project supported by the National Natural Science Foundation of China (No. 31972850) and the Shandong Provincial Key Research Program (No. 2019GSF108223)

Figures(23)

  • Trifluoromethyl is an important group, which is often used in pharmecuticals and agrochemicals. Quaternary carbon centers are widely existed in natural products and synthetic compounds. Recently, the construction of molecules containing trifluoromethylated quaternary carbon centers has been developed rapidly. Starting with direct trifluoromethylation, new synthons and new reactions, the research progress of the synthesis of trifluoromethylated quaternary carbon centers is reviewed.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
      (b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
      (d) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
      (e) Tian, F.; Yan, G.; Yu, J. Chem. Commun. 2019, 55, 13486.

    2. [2]

      For selected recent reviews, see: (a) Pierrot, D.; Merk, I. Angew. Chem., Int. Ed. 2020, 59, 36.
      (b) Li, C.; Ragab, S.; Liu, G.; Tang, W. Nat. Prod. Rep. 2020, 37, 276.
      (c) Feng, J.; Holmes, M.; Krische, M. J. Chem. Rev. 2017, 117, 12564.
      (d) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
      (e) Long, R.; Huang, J.; Gong, J.; Yang, Z. Nat. Prod. Rep. 2015, 32, 1584.

    3. [3]

      Deng, Q.-H.; Wadepohl, H.; Gade, L. H. J. Am. Soc. Chem. 2012, 134, 10769.  doi: 10.1021/ja3039773

    4. [4]

      Granados, A.; Rivilla, I.; Cossío, F. P.; Vallribera, A. Chem.-Eur. J. 2019, 25, 8214.  doi: 10.1002/chem.201900598

    5. [5]

      Katayev, D.; Matouśek, V.; Koller, R.; Togni, A. Org. Lett. 2015, 17, 5898.  doi: 10.1021/acs.orglett.5b03088

    6. [6]

      Calvo, R.; Comas-Vives, A.; Togni, A.; Katayev, D. Angew. Chem., Int. Ed. 2019, 58, 1447.  doi: 10.1002/anie.201812793

    7. [7]

      Früh, N.; Togni, A. Angew. Chem., Int. Ed. 2014, 53, 10813.  doi: 10.1002/anie.201406181

    8. [8]

      Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.  doi: 10.1002/anie.201603352

    9. [9]

      Woźniak, Ł.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.  doi: 10.1021/jacs.5b03243

    10. [10]

      Matsui, H.; Murase, M.; Yajima, T. Org. Biomol. Chem. 2018, 16, 7120.  doi: 10.1039/C8OB02058B

    11. [11]

      Liu, Y.; Zhou, F.; He, K.; Cheng, T.; Zhong, Z.; Liu, Y.; Yang, Y. Phosphorus, Sulfur Silicon Relat. Elem. 2018, 193, 201.  doi: 10.1080/10426507.2017.1417297

    12. [12]

      Guo, Y.; Zhao, X.; Zhang, D.; Murahashi, S.-I. Angew. Chem., Int. Ed. 2009, 48, 2047.

    13. [13]

      Wang, Q.; Huan, F.; Shen, H.; Xiao, J.-C.; Gao, M.; Yang, X.; Murahashi, S.-I.; Chen, Q.-Y.; Guo Y. J. Org. Chem. 2013, 78, 12525.  doi: 10.1021/jo402212j

    14. [14]

      Foster, R. W.; Lenz, E. N.; Simpkins, N. S.; Stead, D. Chem.-Eur. J. 2017, 23, 8810.  doi: 10.1002/chem.201701548

    15. [15]

      (a) Li, L.; Huang, D.; Chen, Q.-Y.; Guo Y. Synlett 2013, 0611.
      (b) Li, L.; Chen, Q.-Y.; Guo, Y. Chem. Commun. 2013, 49, 8764.

    16. [16]

      Wang, W., Huan, F.; Sun, Y.; Fang, J.; Liu, X.-Y.; Chen, Q.-Y.; Guo, Y. J. Fluorine Chem. 2015, 171, 46.  doi: 10.1016/j.jfluchem.2014.10.002

    17. [17]

      Tian, P.; Wang, C.-Q.; Cai, S.-H.; Song, S.; Ye, L.; Feng, C.; Loh, T.-P. J. Am. Chem. Soc. 2016, 138, 15869.  doi: 10.1021/jacs.6b11205

    18. [18]

      Huan, F.; Chen, Q.-Y.; Guo, Y. J. Org. Chem. 2016, 81, 7051.  doi: 10.1021/acs.joc.6b00930

    19. [19]

      Wang, W.; Guo, Y.; Sun, K.; Wang, S.; Zhang, S.; Liu, C.; Chen, Q.-Y. J. Org. Chem. 2018, 83, 14588.  doi: 10.1021/acs.joc.8b02405

    20. [20]

      Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.  doi: 10.1002/anie.201201278

    21. [21]

      Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2013, 52, 5575.  doi: 10.1002/anie.201301123

    22. [22]

      Kwiatkowski, P.; Cholewiak, A.; Kasztelan, A. Org. Lett. 2014, 16, 5930.  doi: 10.1021/ol502941d

    23. [23]

      Sanz-Marco, A.; Blay, G.; Vila, C.; Pedro, J. R. Org. Lett. 2016, 18, 3538.  doi: 10.1021/acs.orglett.6b01494

    24. [24]

      Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. J. Am. Chem. Soc. 2013, 135, 2983.  doi: 10.1021/ja400650m

    25. [25]

      Ibáñez, I.; Kaneko, M.; Kamei, Y.; Tsutsumi, R.; Yamanaka, M.; Akiyama, T. ACS Catal. 2019, 9, 6903.  doi: 10.1021/acscatal.9b01811

    26. [26]

      Ma, C.-H.; Kang, T.-R.; He, L.; Liu, Q.-Z. Eur. J. Org. Chem. 2014, 3981.

    27. [27]

      Chen, Q.; Wang, G.; Jiang, X.; Xu, Z.; Lin, L.; Wang, R. Org. Lett. 2014, 16, 1394.  doi: 10.1021/ol500157b

    28. [28]

      Sim, J.-H.; Park, J-H.; Maity, P.; Song, C.-E. Org. Lett. 2019, 21, 6715.

    29. [29]

      Hou, X.; Ma, H.; Zhang, Z.; Xie, L.; Qin Z.; Fu, B. Chem. Commun. 2016, 52, 1470.

    30. [30]

      (a) Hao, X.-Q.; Wang, C.; Liu, S.-L.; Wang, X.; Wang, L.; Gong, J.-F.; Song, M.-P. Org. Chem. Front. 2017, 4, 308.
      (b) Lai, X.; Zha, G.; Liu, W.; Xu, Y.; Sun, P.; Xia, T.; Shen, Y. Synlett 2016, 27, 1983

    31. [31]

      Nikolaev, V. A.; Supurgibekov, M. B.; Davies, H. M. L.; Sieler, J.; Zakharova, V. M. J. Org. Chem. 2013, 78, 4239.  doi: 10.1021/jo302726m

    32. [32]

      Loska, R.; Bukowsk, P. Org. Biomol. Chem. 2015, 13, 9872.  doi: 10.1039/C5OB01355K

    33. [33]

      Du, D.; Jiang, Y.; Xu, Q.; Tang, X.-Y.; Shi, M. ChemCatChem 2015, 7, 1366.  doi: 10.1002/cctc.201500141

    34. [34]

      Trost, B. M.; Debien, L. J. Am. Chem. Soc. 2015, 137, 11606.  doi: 10.1021/jacs.5b07573

    35. [35]

      Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324.  doi: 10.1002/anie.201602542

    36. [36]

      Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210.  doi: 10.1021/acscatal.6b03015

    37. [37]

      Xu, B.; Zhang, Z.-M.; Liu, B.; Xu, S.; Zhou, L.-J.; Zhang, J. Chem. Commun. 2017, 53, 8152.  doi: 10.1039/C7CC03015K

    38. [38]

      Xu, S.; Zhang, Z.-M.; Xu, B.; Liu, B.; Liu, Y.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 2272.  doi: 10.1021/jacs.7b12137

    39. [39]

      Xu, S.; Liu, B.; Zhang, Z.-M.; Xu, B.; Zhang, J. Chin. J. Chem. 2018, 36, 421.  doi: 10.1002/cjoc.201800070

    40. [40]

      Tang, L.-W.; Zhao, B.-J.; Dai, L.; Zhang, M.; Zhou, Z.-M. Chem.-Asian J. 2016, 11, 2470.  doi: 10.1002/asia.201600941

    41. [41]

      Liu, B.; Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Liu Y.; Zhang, J. Org. Chem. Front. 2017, 4, 1772.  doi: 10.1039/C7QO00291B

    42. [42]

      Rabasa-Alcañiz, F.; Torres, J.; Sánchez-Roselló, M.; Tejero, T.; Merino, P.; Fustero, S.; del Pozo, C. Adv. Synth. Catal. 2017, 359, 3752.  doi: 10.1002/adsc.201700975

    43. [43]

      Bai, X.; Wu, C.; Ge, S.; Lu, Y. Angew. Chem., Int. Ed. 2020, 59, 2764.  doi: 10.1002/anie.201913148

    44. [44]

      Sam, B.; Montgomery, T. P.; Krische, M. J. Org. Lett. 2013, 15, 3790.  doi: 10.1021/ol401771a

    45. [45]

      Holmes, M.; Nguyen, K. D.; Schwartz, L. A.; Luong, T.; Krische, M. J. J. Am. Chem. Soc. 2017, 139, 8114.  doi: 10.1021/jacs.7b04374

  • 加载中
    1. [1]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    2. [2]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    3. [3]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    4. [4]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    5. [5]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    6. [6]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    9. [9]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    10. [10]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    11. [11]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(35)
  • Abstract views(2408)
  • HTML views(559)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return