Citation: Jia Qianfa, Li Yaqiong, Lin Yinhe. Recent Advances in Organocatalyzed Aromatization Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1502-1513. doi: 10.6023/cjoc202001011 shu

Recent Advances in Organocatalyzed Aromatization Reactions

  • Corresponding author: Lin Yinhe, 20170168@yznu.cn
  • Received Date: 6 January 2020
    Revised Date: 16 February 2020
    Available Online: 29 February 2020

    Fund Project: the Yangtze Normal University 2017KYQD123Project supported by the Yangtze Normal University (Nos. 2017KYQD123, 2018QNRC17)the Yangtze Normal University 2018QNRC17

Figures(14)

  • Aromatic compounds possess a particular fragrance and are widely present in natural products and pharmaceuticals. Among them, benzenes are the most abundant substructures of commercially available small-molecule drugs. Therefore, a variety of synthetic methodologies for the construction of aromatic compounds have been pursued vigorously and some significant progresses have been achieved. The dominant methods are transition metal-catalyzed benzannulation of enynes with alkynes to construct the functionalized benzenes. The synthesis of substituted benzene derivatives receives constant attentions since the formation and development of organocatalysis. Compared to metal catalysis, the organocatalytic benzannulation reaction avoids the introduction of a direct group into the pre-existed arene ring and appears to be tolerant of a broad range of substrates. While organocatalysis has emerged as a promising green and effieient synthetic tool and attracted a great deal of attention from synthetic chemists. The development of organocatalyzed aromatization reactions from acyclic starting materials is featured.
  • 加载中
    1. [1]

      (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
      (b) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J. Org. Chem. 2011, 7, 442.

    2. [2]

      Davis, R.; Markham, A.; Balfour, J. A. Drugs 1996, 51, 1019.  doi: 10.2165/00003495-199651060-00010

    3. [3]

      (a) O'Brien, W. M.; Bagby, G. F. Pharmacotherapy 1987, 7, 16.
      (b) Ricketts, A. P.; Lundy, K. M.; Seibel, S. B. Am. J. Vet. Res. 1998, 59, 1441.
      (c) Thau-Zuchman, O.; Shohami, E.; Alexandrovich, A. G.; Trembovler, V.; Leker, R. R. J. Neurotraum. 2012, 29, 375.

    4. [4]

      (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
      (b) Brunel, J. M. Chem. Rev. 2005, 105, 857.
      (c) Schenker, S.; Zamfir, A.; Freund, M.; Tsogoeva, S. B. Eur. J. Org. Chem. 2011, 2011, 2209.

    5. [5]

      (a) Calloway, N. O. Chem. Rev. 1935, 17, 327.
      (b) Tanaka, K. Transition-metal-mediated Aromatic Ring Construction, Wiley, Hoboken, NJ, 2013.
      (c) Sunke, R.; Nallapati, S. B.; Kumar, J. S.; Kumarb, K. S.; Pal, M. Org. Biomol. Chem. 2017, 15, 4042.

    6. [6]

      (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
      (c) Kotha, S.; Misra, S.; Halder, S. Tetrahedron 2008, 64, 10775.
      (d) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.

    7. [7]

      (a) van Otterlo, W. A.; De Koning, C. B. Chem. Rev. 2009, 109, 3743.
      (b) Saito, S.; Salter, M. M.; Gevorgyan, V.; Tsuboya, N.; Tando, K.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 3970.
      (c) Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 11313.
      (d) Gevorgyan, V.; Sadayori, N.; Yamamoto, Y. Tetrahedron Lett. 1997, 38, 8603.

    8. [8]

      Ramachary, D. B.; Ramakumar, K.; Kishor, M. Tetrahedron Lett. 2005, 46, 7037.  doi: 10.1016/j.tetlet.2005.08.051

    9. [9]

      Ramachary, D. B.; Ramakumar, K.; Narayana, V. V. J. Org. Chem. 2007, 72, 1458.  doi: 10.1021/jo0623639

    10. [10]

      Hong, B. C.; Tseng, H. C.; Chen, S. H. Tetrahedron 2007, 63, 2840.  doi: 10.1016/j.tet.2007.01.039

    11. [11]

      Li, S. G.; Hu, X. Q.; Jia, Z. X.; Xu, P. F. Tetrahedron 2010, 66, 8557.  doi: 10.1016/j.tet.2010.08.069

    12. [12]

      Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z.; Shi, D. Org. Lett. 2012, 14, 4598.  doi: 10.1021/ol302058g

    13. [13]

      Song, X.; Zhang, X.; Zhang, S.; Li, H.; Wang, W. Chem.-Eur. J. 2012, 18, 9770.  doi: 10.1002/chem.201201709

    14. [14]

      Link, A.; Sparr, C. Angew. Chem., Int. Ed. 2014, 53, 1.  doi: 10.1002/anie.201310509

    15. [15]

      Fäseke, V. C.; Sparr, C. Angew. Chem., Int. Ed. 2016, 55, 7261.  doi: 10.1002/anie.201602689

    16. [16]

      Magar, K. B. S.; Xia, L.; Lee, Y. R. Chem. Commun. 2015, 51, 8592.  doi: 10.1039/C5CC00623F

    17. [17]

      Ponra, S.; Vitale, M. R.; Michelet, V.; Ratovelomanana-Vidal, V. J. Org. Chem. 2015, 80, 3250.  doi: 10.1021/acs.joc.5b00353

    18. [18]

      Jiang, L.; Li, H.; Zhou, J. F.; Yuan, M. W.; Li, H. L.; Chuan, Y. M.; Yuan, M. L. Synth. Commun. 2018, 48, 336.  doi: 10.1080/00397911.2017.1402351

    19. [19]

      Liu, J. Y.; Yang, X. C.; Liu, Z.; Luo, Y. C.; Lu, H.; Gu, Y. C.; Fang, R.; Xu, P. F. Org. Lett. 2019, 21, 5219.  doi: 10.1021/acs.orglett.9b01828

    20. [20]

      (a) Nair, V.; Pillai, A. N.; Beneesh, P. B.; Suresh, E. Org. Lett. 2005, 7, 4625.
      (b) Nair, V.; Vidya, N.; Biju, A. T.; Deepthi, A.; Abhilash, K. G.; Suresh, E. Tetrahedron 2006, 62, 10136.

    21. [21]

      (a) Zhou, Q. F.; Yang, F.; Guo, Q. X.; Xue, S. Synlett 2007, 2073.
      (b) Hu, B.; Meng, L. G.; Liu, Y. L.; Liang, M.; Xue, S. Synthesis 2009, 24, 4137.

    22. [22]

      Talhi, O.; Makhloufi-Chebli, M.; Pinto, D. C.; Hamdi, M.; Silva, A. M. Synlett 2013, 24, 2559.  doi: 10.1055/s-0033-1339895

    23. [23]

      Babu, G. N.; Ayalew, H. M.; Jain, S. Med. Chem. Res. 2014, 23, 2608.  doi: 10.1007/s00044-013-0857-0

    24. [24]

      Moliterno, M.; Cari, R.; Puglisi, A.; Antenucci, A.; Sperandio, C.; Moretti, E.; Di Sabato, A.; Salvio, R.; Bella, M. Angew. Chem., Int. Ed. 2016, 55, 6525.  doi: 10.1002/anie.201601660

    25. [25]

      Hu, Z.; Dong, J.; Men, Y.; Li, Y.; Xu, X. Chem. Commun. 2017, 53, 1739.  doi: 10.1039/C6CC09430A

    26. [26]

      (a) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534.
      (b) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
      (c) Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. Rev. 2008, 37, 2691.
      (d) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
      (e) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
      (f) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
      (g) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal. 2017, 7, 2583.
      (h) Zhao, M.; Zhang, Y.-T.; Chen, J.; Zhou, L. Asian J. Org. Chem. 2018, 7, 54.

    27. [27]

      Zhu, T. S.; Zheng, P. C.; Mou, C. L.; Yang, S.; Song, B. A.; Chi, Y. R. Nat. Commun. 2014, 5, 6.

    28. [28]

      Zhu, T. S.; Mou, C. L.; Li, B. S.; Smetankova, M.; Song, B. A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658.  doi: 10.1021/jacs.5b02219

    29. [29]

      Huang, X.; Zhu, T.; Huang, Z.; Zhang, Y.; Jin, Z.; Zanoni, G.; Chi, Y. R. Org. Lett. 2017, 19, 6188.  doi: 10.1021/acs.orglett.7b03102

    30. [30]

      Wu, J.; Mou, C.; Chi, Y. R. Chin. J. Chem. 2018, 36, 333.  doi: 10.1002/cjoc.201700773

    31. [31]

      Zhu, T.; Liu, Y.; Smetankova, M.; Zhuo, S.; Mou, C.; Chai, H.; Jin, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2019, 58, 15778.  doi: 10.1002/anie.201910183

    32. [32]

      Hu, J. M.; Zhang, J. Q.; Sun, B. B.; Chen, J. B.; Yu, J. Q.; Yang, X. P.; Lv, H. P.; Wang, Z.; Wang, X. W. Org. Lett. 2019, 21, 8582.  doi: 10.1021/acs.orglett.9b03178

    33. [33]

      Candish, L.; Levensa, A.; Lupton, D. W. Chem. Sci. 2015, 6, 2366.  doi: 10.1039/C4SC03726J

    34. [34]

      Jia, Q.; Wang, J. Org. Lett. 2016, 18, 2212.  doi: 10.1021/acs.orglett.6b00844

    35. [35]

      Zhang, C. L.; Gao, Z. H.; Liang, Z. Q.; Ye, S. Adv. Synth. Catal. 2016, 358, 2862.  doi: 10.1002/adsc.201600531

    36. [36]

      Zhang, C. L.; Ye, S. Org. Lett. 2016, 18, 6408.  doi: 10.1021/acs.orglett.6b03306

    37. [37]

      Liu, J.; Das, D. K.; Zhang, G.; Yang, S.; Zhang, H.; Fang, X. Org. Lett. 2018, 20, 64.  doi: 10.1021/acs.orglett.7b03358

    38. [38]

      Liu, D.; Gao, Y.; Huang, J.; Fu, Z.; Huang, W. J. Org. Chem. 2018, 83, 14210.  doi: 10.1021/acs.joc.8b02532

    39. [39]

      Chen, K. Q.; Luo, Z.; Gao, Z. H.; Ye, S. Chem.-Eur. J. 2019, 25, 3253.

    40. [40]

      Xu, K.; Li, W.; Zhu, S.; Zhu, T. Angew. Chem., Int. Ed. 2019, 58, 17625.  doi: 10.1002/anie.201910049

    41. [41]

      (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
      (b) Brunel, J. M. Chem. Rev. 2005, 105, 857.
      (c) Renzi, P. Org. Biomol. Chem. 2017, 15, 4506.
      (d) Witzig, R. M.; Lotter, D.; Fäseke, V. C.; Sparr, C. Chem.-Eur. J. 2017, 23, 12960.
      (e) Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804.

    42. [42]

      Chen, Y. H.; Cheng, D. J.; Zhang, J.; Wang, Y.; Liu, X. Y.; Tan, B. J. Am. Chem. Soc. 2015, 137, 15062.  doi: 10.1021/jacs.5b10152

    43. [43]

      Chen, Y. H.; Qi, L. W.; Fang, F.; Tan, B. Angew. Chem., Int. Ed. 2017, 56, 16308.  doi: 10.1002/anie.201710537

    44. [44]

      Gao, H.; Xu, Q. L.; Keene, C.; Yousufuddin, M.; Ess, D. H.; Kürti, L. Angew. Chem., Int. Ed. 2016, 55, 566.  doi: 10.1002/anie.201508419

    45. [45]

      Wang, J. Z.; Zhou, J.; Xu, C.; Sun, H.; Kürti, L.; Xu, Q. L. J. Am. Chem. Soc. 2016, 138, 5202.  doi: 10.1021/jacs.6b01458

    46. [46]

      Saha, S.; Banerjee, A.; Maji, M. S. Org. Lett. 2018, 20, 6920.  doi: 10.1021/acs.orglett.8b03063

    47. [47]

      Lu, D. L.; Chen, Y. H.; Xiang, S. H.; Yu, P.; Tan, B.; Li, S. Org. Lett. 2019, 21, 6000.  doi: 10.1021/acs.orglett.9b02143

    48. [48]

      Liu, L.; Wei, L.; Zhang, J. Adv. Synth. Catal. 2010, 352, 1920.  doi: 10.1002/adsc.201000286

    49. [49]

      Zheng, X.; Lv, L.; Lu, S.; Wang, W.; Li, Z. Org. Lett. 2014, 16, 5156.  doi: 10.1021/ol5025053

    50. [50]

      Bu, M. J.; Lu, G. P.; Cai, C. Org. Chem. Front. 2016, 3, 630.  doi: 10.1039/C6QO00020G

    51. [51]

      Reddy, C. R.; Dilipkumar, U.; Shravya, R. Chem. Commun. 2017, 53, 1904.  doi: 10.1039/C6CC09108C

    52. [52]

      Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Adv. Synth. Catal. 2012, 354, 3195.  doi: 10.1002/adsc.201200569

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(52)
  • Abstract views(3054)
  • HTML views(1069)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return