Citation: Song Mengmeng, Zhang Zhiguo, Zheng Dan, Li Xiang, Liang Rui, Zhao Xu'na, Shi Lei, Zhang Guisheng. Hypervalent Organoiodine Promoted Dearylation Reaction of N-Aryl Sulfonamides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2433-2441. doi: 10.6023/cjoc202001007 shu

Hypervalent Organoiodine Promoted Dearylation Reaction of N-Aryl Sulfonamides

  • Corresponding author: Zhang Zhiguo, Zhangzg@htu.edu Zhang Guisheng, zgs6668@yahoo.com
  • Received Date: 4 January 2020
    Revised Date: 16 May 2020
    Available Online: 25 May 2020

    Fund Project: Program for Changjiang Scholars and Innovative Research Team in University IRT1061the Key Project of Henan Educational Committee 18A150009Industrial Process Intelligent Control Innovation and Talent Recruitment Base D17007National Natural Science Foundation of China 21702051Project supported by the National Natural Science Foundation of China (Nos. U1604285, 21772032, 21702051), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1061), Industrial Process Intelligent Control Innovation and Talent Recruitment Base (No. D17007) and the Key Project of Henan Educational Committee (No. 18A150009)National Natural Science Foundation of China 21772032National Natural Science Foundation of China U1604285

Figures(1)

  • An efficient Dess-Martin periodinane (DMP)-promoted dearylation of N-arylsulfonamides was developed through a highly selective oxidative cleavage of the inert C(aryl)-N bonds in secondary sulfonamides while leaving the S-N bond unchanged. This metal-free reaction proceeds under mild conditions and provides access to various biologically important primary sulfonamides, some of which are otherwise unattainable using conventional aminolysis and hydrolysis methods. The concise and efficient dearylation reaction provides the use of an aryl group as a removable protecting sulfonamide group under metal catalyst-free conditions.
  • 加载中
    1. [1]

      (a) Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Org. Lett. 2018, 20, 1167.
      (b) Nematollahi, D.; Davarani, S. S. H.; Mirahmadpour, P.; Varmaghani, F. Chin. Chem. Lett. 2014, 25, 593.
      (c) Sun, K.; Shi, Z.; Liu, Z.; Luan, B.; Zhu, J.; Xue, Y. Org. Lett. 2018, 20, 6687.

    2. [2]

      For a List of Sulfa Drugs, See: http://www.thefullwiki.org/Sulfa_drugs.

    3. [3]

      (a) Wang, X.; Ahn, Y. M.; Lentscher, A. G.; Lister, J. S.; Brothers, R. C.; Kneen, M. M.; Gerratana, B.; Boshoff, H. I.; Dowd, C. S. Bioorg. Med. Chem. Lett. 2017, 27, 4426.
      (b) Ascenzio, M. D.; Guglielmi, P.; Carradori, S.; Secci, D.; Florio, R.; Mollica, A.; Ceruso, M.; Akdemir, A.; Sobolev, A. P.; Supuran, C. T. J. Enzym. Inhib. Med. Chem. 2017, 32, 51.
      (c) Luci, D. K.; Jameson, J. B.; Yasgar, A.; Diaz, G.; Joshi, N.; Kantz, A.; Markham, K.; Perry, S.; Kuhn, N.; Yeung, J.; Kerns, E. H.; Schultz, L.; Holinstat, M.; Nadler, J. L.; Taylor-Fishwick, D. A.; Jadhav, A.; Simeonov, A.; Holman, T. R.; Maloney, D. J. J. Med. Chem. 2014, 57, 495.
      (d) Walsh, M. J.; Brimacombe, K. R.; Veith, H.; Bougie, J. M.; Daniel, T.; Leister, W.; Cantley, L. C.; Israelsen, W. J.; Vander Heiden, M. G.; Shen, M.; Auld, D. S.; Thomas, C. J.; Boxer, M. B. Bioorg. Med. Chem. Lett. 2011, 21, 6322.
      (e) Al-Nadaf, A.; Sheikha, G. A.; Taha, M. O. Bioorg. Med. Chem. 2010, 18, 3088.
      (f) Wydysh, E. A.; Medghalchi, S. M.; Vadlamudi, A.; Townsend, C. A. J. Med. Chem. 2009, 52, 3317.
      (g) Johnson, S. L.; Chen, L. H.; Barile, E.; Emdadi, A.; Sabet, M.; Yuan, H.; Wei, J.; Guiney, D.; Pellecchia, M. S. Bioorg. Med. Chem. 2009, 17, 3352.
      (h) Zheng, X.; Oda, H.; Takamatsu, K.; Sugimoto, Y.; Tai, A.; Akaho, E.; Ali, H. I.; Oshiki, T.; Kakuta, H.; Sasaki, K. Bioorg. Med. Chem. 2007, 15, 1014.
      (i) Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6, 1819.

    4. [4]

      (a) Shi, M.; Yang, Y. H.; Xu, B. Synlett 2004, 1622.
      (b) Liu, C. R.; Li, M. B.; Cheng, D. J.; Yang, C. F.; Tian, S. K. Org. Lett. 2009, 11, 2543.
      (c) Liu, Z.; Larock, R. C. Org. Lett. 2003, 5, 4673.
      (d) Fu, W.; Shen, R.; Bai, E.; Zhang, L.; Chen, Q.; Fang, Z.; Li, G.; Yi, X.; Zheng, A.; Tang, T. ACS Catal. 2018, 8, 9043.
      (e) Gong, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 697.
      (f) Yu, J.; Liu, S. S.; Cui, J.; Hou, X. S.; Zhang, C. Org. Lett. 2012, 14, 832.
      (g) Xiang, Y.; Kuang, Y.; Wu, J. Org. Chem. Front. 2016, 3, 901.
      (h) Li, Y. X.; Li, L. H.; Yang, Y. F.; Hua, H. L.; Yan, X. B.; Zhao, L. B.; Zhang, J. B.; Ji, F. J.; Liang, Y. M. Chem. Commun. 2014, 50, 9936.
      (i) Chen, K.; Shi, B. F. Angew. Chem., Int. Ed. 2014, 53, 11950.
      (j) Wang, H. Y.; Zhang, X.; Guo, Y. L.; Dong, X. C.; Tang, Q. H.; Lu, L. Rapid Commun. Mass Spectrom. 2005, 19, 1696.
      (k) Feng, S. L.; Liu, C. Z.; Li, Q.; Yu, X. C.; Xu, Q. Chin. Chem. Lett. 2011, 22, 1021.
      (l) Sun, K.; Li, Y.-L.; Feng, R.-R.; Mu, S.-Q.; Wang, X.; Zhang, B. J. Org. Chem. 2019, 84, 12792.

    5. [5]

      Yao, B.; Zhang, Y. Tetrahedron Lett. 2008, 49, 5385.  doi: 10.1016/j.tetlet.2008.06.114

    6. [6]

      Hewson, A. T.; Sharpe, D. A.; Wadsworth, A. H. Synth. Commun. 1989, 19, 2095.  doi: 10.1080/00397918908052603

    7. [7]

      Wang, S. E.; Wang, L.; He, Q.; Fan, R. Angew. Chem., Int. Ed. 2015, 54, 13655.  doi: 10.1002/anie.201508161

    8. [8]

      Katohgi, M.; Yokoyama, M.; Togo, H. Synlett 2000, 1055.

    9. [9]

      (a) Wang, Q.; Su, Y.; Li, L.; Huang, H. Chem. Soc. Rev. 2016, 45, 1257.
      (b) Taniguchi, T.; Imoto, M.; Takeda, M.; Matsumoto, F.; Nakai, T.; Mihara, M.; Mizuno, T.; Nomoto, A.; Ogawa, A. Tetrahedron 2016, 72, 4132.
      (c) Azzena, U.; Cattari, M.; Melloni, G.; Pisano, L. Synthesis 2003, 2811.
      (d) Koreeda, T.; Kochi, T.; Kakiuchi, F. J. Organomet. Chem. 2013, 741~742, 148.
      (e) Koreeda, T.; Kochi, T.; Kakiuchi, F. Organometallics 2013, 32, 682.
      (f) Koreeda, T.; Kochi, T.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 7238.
      (g) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 6098.

    10. [10]

      (a) Kamal, R.; Kumar, V.; Kumar, R. Chem.-Asian. J. 2016, 11, 1988.
      (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523.
      (c) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
      (d) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
      (e) Zhdankin, V. V. ARKIVOC 2009, 1.
      (f) Ladziata, U.; Zhdankin, V. V. ARKIVOC 2006, 26.

    11. [11]

      (a) Wan, Y.; Zhang, Z.; Ma, N.; Bi, J.; Zhang, G. J. Org. Chem. 2018, 84, 780.
      (b) Zhang, Z.; Gao, X.; Yu, H.; Zhang, G.; Liu, J. Adv. Synth. Catal. 2018, 360, 3406.
      (c) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
      (d) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
      (e) Zhang, Z.; Zhang, Y.; Huang, G.; Zhang, G. Org. Chem. Front. 2017, 4, 1372.
      (f) Zhang, Z.; Gao, X.; Li, Z.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. Org. Chem. Front. 2017, 4, 404.
      (g) Liu, Y.; Zhang, Z.; Wan, Y.; Zhang, G.; Li, Z.; Bi, J.; Ma, N.; Liu, T.; Liu, Q. J. Org. Chem. 2017, 82, 3901.

    12. [12]

      (a) Onundi, Y.; Drake, B. A.; Malecky, R. T.; DeNardo, M. A.; Mills, M. R.; Kundu, S.; Ryabov, A. D.; Beach, E. S.; Horwitz, C. P.; Simonich, M. T.; Truong, L.; Tanguay, R. L.; Wright, L. J.; Singhal, N.; Collins, T. J. Green Chem. 2017, 19, 4234.
      (b) Lu, L. H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W. M. Chin. Chem. Lett. 2019, 30, 1237.
      (c) Xie, L. Y.; Duan, Y.; Lu, L. H.; Li, Y. J.; Peng, S.; Wu, C.; Liu, K. J.; Wang, Z.; He, W. M. ACS Sustainable Chem. Eng. 2017, 5, 10407.

    13. [13]

      Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537.  doi: 10.1021/jo9824596

    14. [14]

      (a) Zhang, Z.; Zheng, D.; Wan, Y.; Zhang, G.; Bi, J.; Liu, Q.; Liu, T.; Shi, L. J. Org. Chem. 2018, 83, 1369.
      (b) Zhang, Z.; Li, X.; Song, M.; Wan, Y.; Zheng, D.; Zhang, G.; Chen, G. J. Org. Chem. 2019. 84, 12792.

    15. [15]

      Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, John Wiley & Sons Inc., 1999.

    16. [16]

      Zhang, Y.; Li, Y.; Zhang, X.; Jiang, X. Chem. Commun. 2015, 51, 941.  doi: 10.1039/C4CC08367A

    17. [17]

      Debnath, S.; Mondal, S. ChemistrySelect 2018, 3, 4129.  doi: 10.1002/slct.201800435

    18. [18]

      Al-Shawabkeh, J. D.; Al-Nadaf, A. H.; Dahabiyeh, L. A.; Taha, M. O. Med. Chem. Res. 2014, 23, 127.  doi: 10.1007/s00044-013-0616-2

    19. [19]

      Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Alikarami, M. J. Chem. Sci. 2010, 122, 143.  doi: 10.1007/s12039-010-0015-x

    20. [20]

      Massah, A. R.; Sayadi, S.; Ebrahimi, S. RSC Adv. 2012, 2, 6606.  doi: 10.1039/c2ra20418e

    21. [21]

      Zhang, W.; Xie, J.; Rao, B.; Luo, M. J. Org. Chem. 2015, 80, 3504.  doi: 10.1021/acs.joc.5b00130

    22. [22]

      Chen, K.; Chen, W.; Han, B.; Chen, W.; Liu, M.; Wu, H. Org. Lett. 2020, 22, 1841.  doi: 10.1021/acs.orglett.0c00183

    23. [23]

      Burmistrov, S. I. Ukr. Fiz. Zh. 1966, 32, 601.

    24. [24]

      Krasavin, I. A. Metody Polycheniya Khim. Reaktivov i Preparatov, Gos. Kom. Sov. Min. SSSR po Khim. 1962, 4~5, 69.

    25. [25]

      Ueda, Y.; Yano, H.; Momose, T. Chem. Pharm. Bull. 1964, 12, 5.  doi: 10.1248/cpb.12.5

    26. [26]

      Shekhar, S. X.; Dunn, T. B.; Kotecki, B. J.; Montavon, D. K.; Cullen, S. C. J. Org. Chem. 2011, 76, 4552.  doi: 10.1021/jo200443u

    27. [27]

      Gowda, B. T.; Jayalakshmi, K. L.; Shetty, M. Z. Naturforsch. 2004, 59a, 239.

    28. [28]

      You, C. R.; Yao, F.; Yan, T.; Cai, M. C. RSC Adv. 2016, 6, 43605.  doi: 10.1039/C6RA04298H

    29. [29]

      Namba, K.; Zheng, X.; Motoshima, K.; Kobayashi, H.; Tai, A.; Takahashi, E.; Sasaki, K.; Okamoto, K.; Kakuta, H. Bioorg. Med. Chem. 2008, 16, 6131.  doi: 10.1016/j.bmc.2008.04.040

    30. [30]

      Ueda, Y.; Yano, H.; Momose, T. Chem. Pharm. Bull. 1964, 12, 5.  doi: 10.1248/cpb.12.5

    31. [31]

      Cremlyn, R. J.; Goulding, K. H.; Swinbourne, F. J.; Yung, K. M. Phosphorus Sulfur 1981, 10, 111.

    32. [32]

      Solov'ev, M. Y.; Filimonov, S. I.; Skorenko, A. V.; Ivanenkov, Ya. A.; Balakin, K. B.; Dorogov, M. V. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 2004, 47, 28.

    33. [33]

      Kostsova, A. G. Zh. Obshch. Khim. 1953, 23, 949.

    34. [34]

      Maghsoodia, N. K.; Khazaelia, T.; Massah, A. R. J. Chem. Res. 2015, 39, 141.  doi: 10.3184/174751915X14241022318075

    35. [35]

      Pantaine, L.; Richard, F.; Marrot, J.; Moreau, X.; Coeffard, V.; Grecka, C. Adv. Synth. Catal. 2016, 358, 2012.  doi: 10.1002/adsc.201501139

    36. [36]

      Johnson, C. R.; Jonsson, E. U.; Bacon, C. C. J. Org. Chem. 1979, 44, 2055.  doi: 10.1021/jo01327a001

    37. [37]

      Gregg, D. C.; Blood, C. A., Jr. J. Org. Chem. 1951, 16, 1255.

    38. [38]

      Bonk, J. D.; Amos, D. T.; Olson, S. J. Synth. Commun. 2007, 37, 2039.  doi: 10.1080/00397910701356942

    39. [39]

      Illuminati, G. J. Am. Chem. Soc. 1956, 78, 2603.  doi: 10.1021/ja01592a075

    40. [40]

      Amorosa, I. M. Farmaco 1949, 4, 290.

    41. [41]

      Yale, H.; Sowinski, F. J. Org. Chem. 1960, 25, 1824.  doi: 10.1021/jo01080a612

    42. [42]

      Isozaki, M. Tokyo Kogyo Shikensho Hokoku 1950, 45, 295.

    43. [43]

      Baker, Robert H.; Dodson, R. M.; Riegel, B. J. Am. Chem. Soc. 1946, 68, 2636.  doi: 10.1021/ja01216a063

    44. [44]

      Chhabra, S. R.; Mahajan, A.; Chan, W. C. J. Org. Chem. 2002, 67, 4017.  doi: 10.1021/jo010456e

    45. [45]

      Tota, A.; John-Campbell, S. S.; Briggs, E. L.; Estevez, G. O.; Afonso, M.; Degennaro, L.; Luisi, R.; J. A. Org. Lett. 2018, 20, 2599.  doi: 10.1021/acs.orglett.8b00788

    46. [46]

      Maslankiewicz, A.; Marciniec, K.; Pawlowski, M.; Zajdel, P. Heterocycles 2007, 71, 1975.  doi: 10.3987/COM-07-11088

    47. [47]

      Moroda, A.; Togo, H. Tetrahedron 2006, 62, 12408.  doi: 10.1016/j.tet.2006.09.112

    48. [48]

      Field, L.; Grunwald, F. A. J. Am. Chem. Soc. 1953, 75, 934.  doi: 10.1021/ja01100a048

    49. [49]

      Truce, W. E.; Gunberg, P. F. J. Am. Chem. Soc. 1950, 72, 2401.  doi: 10.1021/ja01162a014

  • 加载中
    1. [1]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    2. [2]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    5. [5]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    6. [6]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    7. [7]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    12. [12]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    13. [13]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    14. [14]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    15. [15]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    16. [16]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    17. [17]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    18. [18]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    19. [19]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    20. [20]

      Hanghang ZhaoWenbo QiXin TanXing XuFengmin SongXianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898

Metrics
  • PDF Downloads(8)
  • Abstract views(1740)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return