Citation: Yin Biao, Fu Manlin, Zhu Qing. Recent Advances in Transition Metal-O Weak Coordinated C(sp2)—H Direct Alkenylation Reaction[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1461-1472. doi: 10.6023/cjoc202001004 shu

Recent Advances in Transition Metal-O Weak Coordinated C(sp2)—H Direct Alkenylation Reaction

  • Corresponding author: Zhu Qing, zhuq@zjut.edu.cn
  • Received Date: 2 January 2020
    Revised Date: 10 March 2020
    Available Online: 31 March 2020

    Fund Project: the Natural Science Foundation of Zhejiang Province LY17B060009Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17B060009)

Figures(5)

  • Over the past decade, the C(sp2)-H functionalization has emerged as a powerful methodology due to its high efficiency, simplicity, and high atomic economy. Among them, weak coordination between transition metal and oxygen atom has become an important strategy for C(sp2)-H alkenylation of arenes. In this paper, the transition metal-catalyzed C(sp2)-H alkenylation of substrates containing hydroxy, aryl ether, aldehyde, carbonyl, carboxyl, amide, phosphoric acid and sulfonic acid and their derivatives groups is reviewed, and its future development trends are prospected.
  • 加载中
    1. [1]

    2. [2]

      (a) Swamy, T.; Reddy, B. V. S.; Gree, R.; Ravinder, V. ChemistrySelect 2018, 3, 47.
      (b) Giri, R.; Lan, Y.; Liu, P.; Houk, K. N.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 14118.
      (c) Liu, L.; Wang, G.; Jiao, J.; Li, P. Org. Lett. 2017, 19, 6132.

    3. [3]

      Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.  doi: 10.1021/ar200185g

    4. [4]

      Bras, J. L. B.; Muzart, J. Chem. Rev. 2011, 111, 1170.  doi: 10.1021/cr100209d

    5. [5]

      Sarkar, S. D.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461.  doi: 10.1002/adsc.201400110

    6. [6]

      Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53, 2203.  doi: 10.1002/anie.201310544

    7. [7]

      (a) Miura, M.; Tsuda, T.; Satoh, T.; Nomura, M. Chem. Lett. 1997, 1103.
      (b) Zhang, C.; Ji, J.; Sun, P. J. Org. Chem. 2014, 79, 3200.

    8. [8]

      (a) Lu, Y.; Wang, D. H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916.
      (b) Li, L.; Liu, Q.; Chen, J.; Huang, Y. Synlett 2019, 30, 1366.

    9. [9]

      Huang, C. H.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133.

    10. [10]

      (a) Yamaguchi, M.; Hayashi, A.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 1151.
      (b) Yadav, J. S.; Reddy, B. V. S.; Sengupta, S.; Biswas, S. K. Synthesis 2009, 1301.
      (c) Rao, V. K.; Shelke, G. M.; Tiwari, R.; Parang, K.; Kumar, A. Org. Lett. 2013, 15, 2190.

    11. [11]

      (a) Murai, M.; Yamamoto, M.; Takai, K. Org. Lett. 2019, 21, 3441.
      (b) Murai, M.; Yamamoto, M.; Takai, K. Chem.-Eur. J. 2019, 25, 15189.

    12. [12]

      Dou, Y.-D.; Kenry.; Liu, J.; Jiang, J.-Z.; Zhu, Q. Chem.-Eur. J. 2019, 25, 6896.  doi: 10.1002/chem.201900530

    13. [13]

      Li, G.; Leow, D.; Wan, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2013, 52, 1245.  doi: 10.1002/anie.201207770

    14. [14]

      (a) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Org. Chem. 2007, 72, 3600.
      (b) Ueno, S.; Kochi, T.; Chatani, N.; Kakiuchi, F. Org. Lett. 2009, 11, 855.

    15. [15]

      Padala, K.; Jeganmohan, M. Org. Lett. 2011, 13, 6144.  doi: 10.1021/ol202580e

    16. [16]

      Patureau, F. W.; Besset, T.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1064.  doi: 10.1002/anie.201006222

    17. [17]

      (a) Sk, M. R.; Bera, S. S.; Maji, M. S. Adv. Synth. Catal. 2019, 361, 585.
      (b) Sk, M. R.; Maji, M. S. Org. Chem. Front. 2020, 7, 19.

    18. [18]

      Ali, S.; Huo, J.; Wang, C. Org. Lett. 2019, 21, 6961.  doi: 10.1021/acs.orglett.9b02554

    19. [19]

      (a) Tsuchikama, K.; Kuwata, Y.; Tahara, Y.; Yoshinami, Y.; Shibata, T. Org. Lett. 2007, 9, 3097.
      (b) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. Org. Lett. 2014, 16, 4208.

    20. [20]

      Li, G.; Wan, L.; Zhang, G.; Leow, D.; Spangler, J.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 4391.  doi: 10.1021/ja5126897

    21. [21]

      Hu, F.; Szostak, M. Chem. Commun. 2016, 52, 9715.  doi: 10.1039/C6CC04537E

    22. [22]

      Li, C.; Wang, S.-M.; Qin, H.-L. Org. Lett. 2018, 20, 4699.  doi: 10.1021/acs.orglett.8b02037

    23. [23]

      (a) Banjare, S. K.; Nanda, T.; Ravikumar, P. C. Org. Lett. 2019, 21, 8138.
      (b) Pradhan, S.; Mishra, M.; De, P. B.; Banerjee, S. Org. Lett. 2020, 22, 1720.

    24. [24]

      (a) Zhang, C.; Wang, M.; Fan, Z.; Sun, L.-P.; Zhang, A. J. Org. Chem. 2014, 79, 7626.
      (b) Yakkala, P. A.; Giri, D.; Chaudhary, B.; Auti, P.; Sharma, S. Org. Chem. Front. 2019, 6, 2441.
      (c) Dias, G. G.; Nascimento, T. A.; Almeida, A. A.; Bombaça, A. C. S.; Menna-Barreto, R. F. S.; Jacob, C.; Júnior, S. E. N. S.; Ackermann, L. Eur. J. Org. Chem. 2019, 13, 2344.

    25. [25]

      Singh, K. S.; Dixneuf, P. H. Organometallics 2012, 31, 7320.

    26. [26]

      (a) Patureau, F.; Besset, T.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1064.
      (b) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372.

    27. [27]

      Ncube, G.; Huestis, M. P. Organometallics 2019, 38, 76.  doi: 10.1021/acs.organomet.8b00327

    28. [28]

      (a) Boele, M. D. K.; Strijdonck, G. P. F.; Vries, A. H. M.; Kamer, P. C. J.; Vries, J. G.; Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1587.
      (b) Lee, G. T.; Jiang, X.; Prasad, K.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 1921.
      (c) Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292.
      (d) Lipshutz, B. H.; Nishikata, T. Org. Lett. 2010, 12, 1972.
      (e) Liu, X. Z.; Hii, K. K. J. Org. Chem. 2011, 76, 8022.
      (f) Schmidt, B.; Elizarov, N. Chem. Commun. 2012, 48, 4350.
      (g) Kim, B. S.; Jiang, C.; Lee, D. J.; Youn, S. W. Chem. Asian J. 2010, 5, 2336.

    29. [29]

      (a) Rauf, W.; Thompson, A. L.; Brown, J. M. Chem. Commun. 2009, 26, 3874.
      (b) Wang, L.; Liu, S.; Li, Z.; Yu, Y. Org. Lett. 2011, 13, 6137.

    30. [30]

      Tamizmani, M.; Gouranga, N.; Jeganmohan, M. ChemistrySelect 2019, 4, 2976.  doi: 10.1002/slct.201900522

    31. [31]

      (a) Hashimoto, Y.; Hirano, T.; Satoh, T.; Kakiuchi, F.; Miura, M. Org. Lett. 2012, 14, 2058.
      (b) Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. J. Org. Chem. 2013, 78, 638.

    32. [32]

      (a) Wang, Y.; Li, C.; Li, Y.; Yin, F.; Wang, X.-S. Adv. Synth. Catal. 2013, 355, 1724.
      (b) Wang, S.-M.; Li, C.; Leng, J.; Bukhari, S. N. A.; Qin, L.-H. Org. Chem. Front. 2018, 5, 1411.

    33. [33]

      Li, F.; Shen, C.; Zhang, J.; Wu, L.; Zhuo, X.; Ding, L.; Zhong, G. Adv. Synth. Catal. 2016, 358, 3932.  doi: 10.1002/adsc.201600569

    34. [34]

      Sun, X.; Zhao, W.; Li, B.-J. Chem. Commun. 2020, 56, 1298.  doi: 10.1039/C9CC08735D

    35. [35]

      Jaiswal, Y.; Kumar, Y.; Kumar, A. J. Org. Chem. 2018, 83, 1223.  doi: 10.1021/acs.joc.7b02618

    36. [36]

      (a) Bu, Q; Rogge, T.; Kotek, V.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 765.
      (b) Ramesh, V. B.; Muniraj, N.; Prabhu, K. R. Adv. Synth. Catal. 2019, 361, 3683.

    37. [37]

      Jambu, S.; Sivasakthikumaran, R.; Jeganmohan, M. Org. Lett. 2019, 21, 1320.  doi: 10.1021/acs.orglett.8b04140

    38. [38]

      Zhao, P.; Niu, R.; Wang, F.; Han, K.; Li, X. Org. Lett. 2012, 14, 4166.  doi: 10.1021/ol3018352

    39. [39]

      Jiao, L.-Y.; Oestreich, M. Org. Lett. 2013, 15, 5374.  doi: 10.1021/ol402687t

    40. [40]

      Zhang, L.-Q.; Yang, S.; Huang, X.; You, J.; Song, F. Chem. Commun. 2013, 49, 8830.  doi: 10.1039/c3cc44787a

    41. [41]

      (a) Leitch, J. A.; Wilson, P. B.; McMullin, C. L.; Mahon, M. F.; Bhonoah, Y. I.; Williams, H.; Frost, C. G. ACS Catal. 2016, 6, 5520.
      (b) Leitch, J. A.; Cook, H. P.; Bhonoah, Y.; Frost, C. G. J. Org. Chem. 2016, 81, 10081.
      (c) Ma, W.; Dong, H.; Wang, D.; Ackermann, L. Adv. Synth. Catal. 2017, 359, 966.

    42. [42]

      Chen, W.; Li, H.-J.; Li, Q.-Y.; Wu, Y.-C. Org. Biomol. Chem. 2020, 18, 500.  doi: 10.1039/C9OB02421B

    43. [43]

      Miura, M.; Tsuda, T.; Pivasa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.  doi: 10.1021/jo980584b

    44. [44]

      (a) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
      (b) Wang, D. H.; Engle, K. M.; Shi, B.-F.; Yu. J.-Q. Science 2010, 327, 315.
      (c) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 6169.
      (d) Baxter, R. D.; Sale, D.; Engle, K. M.; Yu, J.-Q.; Blackmond, D. G. J. Am. Chem. Soc. 2012, 134, 4600.

    45. [45]

      Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024.  doi: 10.1021/jo200509m

    46. [46]

      (a) Huang, L.; Biafora, A.; Zhang, G.; Bragoni, V.; Gooẞen, L. Angew. Chem., Int. Ed. 2016, 55, 6933.
      (b) Trita, A. S.; Biafora, A.; Pichette-Drapeau, M.; Weber, P.; Gooẞen, L. J. Angew. Chem., Int. Ed. 2018, 57, 14580.
      (c) Jambu, S.; Tamizmani, M.; Jeganmohan, M. Org. Lett. 2018, 20, 1982.
      (d) Mandal, A.; Mehta, G.; Dana, S.; Baidya, M. Org. Lett. 2019, 21, 5879.

    47. [47]

      Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.  doi: 10.1021/ja400659s

    48. [48]

      Huang, Y.; Pi, C.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2020, 362, 1385.  doi: 10.1002/adsc.201901195

    49. [49]

      (a) Chan, L. Y.; Kim, S.; Ryu, T.; Lee, P. H. Chem. Commun. 2013, 49, 4682.
      (b) Meng, X.; Kim, S. Org. Lett. 2013, 15, 1910.

    50. [50]

      Wang, H.-L.; Hu, R.-B.; Zhang, H.; Zhou, A.-X.; Yang, S.-D. Org. Lett. 2013, 15, 5302.  doi: 10.1021/ol402577p

    51. [51]

      Jiao, L. Y.; Ferreira, A. V.; Oestreich, M. Chem. Asian J. 2016, 11, 367.  doi: 10.1002/asia.201500829

    52. [52]

      (a) Unoh, Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2013, 15, 3258.
      (b) Itoh, M.; Hashimoto, Y.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 8098.

    53. [53]

      (a) Dong, Y.; Liu, G. Chem. Commun. 2013, 49, 8066.
      (b) Ma, W.; Mei, R.; Tenti, G.; Ackermann, L. Chem. Eur. J. 2014, 20, 15248.

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    9. [9]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    18. [18]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(36)
  • Abstract views(1793)
  • HTML views(468)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return