Citation: Lü Jinqiang, Zeng Jing, Abulikemu Abudu Rexit. Highly Active Manganese Dioxide Catalyzed the Construction of S-S Bond[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2483-2490. doi: 10.6023/cjoc201912045 shu

Highly Active Manganese Dioxide Catalyzed the Construction of S-S Bond

  • Corresponding author: Zeng Jing, zengjing800111@163.com Abulikemu Abudu Rexit, aarexit@xjnu.edu.cn
  • Received Date: 31 December 2019
    Revised Date: 12 May 2020
    Available Online: 19 May 2020

    Fund Project: Project supported by the Scientific Research Program of the Higher Education Institution of Xinjiang (No. XJEDU2020I015), and the Xinjiang Tianshan Youth Program (No. 2017Q026)The Xinjiang Tianshan Youth Program 2017Q026The Scientific Research Program of the Higher Education Institution of Xinjiang XJEDU2020I015

Figures(2)

  • Generation of highly active manganese dioxide in situ by using catalytic amount of potassium permanganate in anhydrous ethanol system, the catalytic system promoted S-S bond construction by free radical self coupling reactions of thiophenol and mercaptan compounds at room temperature. 14 disulfides were obtained with 70%~99% yields. At the same time, it was also found that the catalytic system could also catalyze radical cross-coupling reactions between symmetric disulfides and different substituents of thiophenols, thiols, or two different symmetric disulfides, 13 asymmetric disulfides were obtained with 19%~72% yields. The protocol offered the advantages of simple and efficient, easy separation, green solvent, wide range of substrate applications, and mild conditions. All products were confirmed by 1H NMR and 13C NMR spectra.
  • 加载中
    1. [1]

      Lin, Y. M.; Yi, W. B. Chin. J. Org. Chem. 2018, 38, 1207(in Chinese).
       

    2. [2]

      Gong, J. X.; Sheng, L.; Yao, L. G.; Li, J.; Zhou, Y. B.; Guo, Y. W. Chin. J. Org. Chem. 2012, 32, 593(in Chinese).
       

    3. [3]

      Su, W. K.; Liang, X. R.; Li, Y. S.; Zhang, Y. M. Chin. J. Org. Chem. 2003, 23, 1019(in Chinese).
       

    4. [4]

      Gong, J, X.; Sun, Y, Q.; Wang, J, D.; Guo, Y, W. Chin. J. Org. Chem. 2008, 28, 252(in Chinese).
       

    5. [5]

      Gong, J. J.; Shen, X.; Yao, L. G.; Jiang, H. L.; Krohn, K.; Guo, Y. W. Org. Lett. 2007, 9, 1715.  doi: 10.1021/ol0703783

    6. [6]

      Li, X. X.; Lin, S. F.; Chen, J. Nat. Prod. Res. Dev. 2012, 24, 132(in Chinese).
       

    7. [7]

      Halai, R.; Craik, D. J. Nat. Prod. Rep. 2009, 26, 526.  doi: 10.1039/b819311h

    8. [8]

      Lee, S. H. Arch. Pharm. Res. 2009, 32, 299.  doi: 10.1007/s12272-009-1300-4

    9. [9]

      Wender, P. A.; Goun, E. A.; Jones, L. R.; Pillow, T. H.; Rothbard, J. B.; Shinde, S.; Contag, C. H. Proc. Nat.l Acad. Sci. U. S. A. 2007, 104, 10340.  doi: 10.1073/pnas.0703919104

    10. [10]

      Maurela, F.; Debartb, F.; Cavelierc, F.; Thierrya, A. R..; Lebleu, B.; Vasseur, J. J.; Vives, E. Bioorg. Med. Chem. Lett. 2005, 15, 5084.  doi: 10.1016/j.bmcl.2005.07.086

    11. [11]

      Besret, S.; Ollivier, N.; Blanpain, A.; Melnyk, O. J. Pept. Sci. 2008, 14, 1244.  doi: 10.1002/psc.1063

    12. [12]

      Gottlieb, D.; Grunwald, C.; Nowak, C.; Kuhlmann, J.; Waldmann, H. Chem. Commun. 2006, 3, 260.
       

    13. [13]

      Alexander, M.; Gerauer, M.; Pechlivanis, M.; Popkirova, B.; Dvorsky, R.; Brunsveld, L.; Waldmann, H.; Kuhlmann, J. ChemBioChem 2009, 10, 98.  doi: 10.1002/cbic.200800275

    14. [14]

      Dou, Y. C.; Huang, X.; Wang, H.; Yang, L. T.; Li, H.; Yuan, B. X.; Yang, G. Y. Green. Chem. 2017, 19, 2491.  doi: 10.1039/C7GC00401J

    15. [15]

      Gormer, K.; Waldmann, H.; Triola, G. J. Org. Chem. 2010, 75, 1811.  doi: 10.1021/jo902695a

    16. [16]

      Huang, P. F.; Wang, P.; Tang, S.; Fu, Z. J.; Lei, A. W. Angew. Chem., Int. Ed. 2018, 57, 8115.  doi: 10.1002/anie.201803464

    17. [17]

      Stellenboom, N.; Hunter, R.; Caira, M. R. Tetrahedron 2010, 66, 3228.  doi: 10.1016/j.tet.2010.02.077

    18. [18]

      Yang, F.; Wang, W.; Li, K.; Zhao, W. L.; Dong, X. C. Tetrahedron Lett. 2017, 58, 218.  doi: 10.1016/j.tetlet.2016.12.007

    19. [19]

      Parida, A.; Choudhuri, K.; Mal, P. Chem. Asian. J. 2019, 14, 2579.  doi: 10.1002/asia.201900620

    20. [20]

      Noureldin, N. A.; Caldwell, M.; Hendry, J.; Lee, D, G. Synthesis 1998, 1587.
       

    21. [21]

      Shaabani, A.; Tavasoli-Rad, F.; Lee, D. G. Synth. Commun. 2011, 35, 571.
       

    22. [22]

      Liu, S. P.; Qi, Z. J.; Zhang, Z.; Qian, B. Org. Lett. 2019, 21, 7722.  doi: 10.1021/acs.orglett.9b02545

    23. [23]

      Yang, Y.; Hasimujiang, B.; Rexit, A. A. Chin. J. Org. Chem. 2019, 39, 727(in Chinese).
       

    24. [24]

      Liu, S. Z.; Rexit, A. A. Chemistry Bulletin 2019, 82, 270(in Chinese).

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    13. [13]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    18. [18]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(8)
  • Abstract views(1526)
  • HTML views(269)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return