Citation: Xu Xinming, Yang Hanlin, Li Wenzhong. Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1912-1925. doi: 10.6023/cjoc201912044 shu

Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes

  • Corresponding author: Xu Xinming, xin_mingxu@163.com
  • Received Date: 31 December 2019
    Revised Date: 16 March 2020
    Available Online: 9 April 2020

    Fund Project: the National Natural Science Foundation of China 21901220the Young Scholars Research Fund of Yantai University HY19B06Project supported by the National Natural Science Foundation of China (No. 21901220), and the Young Scholars Research Fund of Yantai University (No. HY19B06)

Figures(33)

  • Aryl and vinyl sulfides have attracted much attention from medical and organic chemists because they are prevalent in natural or bioactive molecules and other potential functional organic materials. Therefore, considerable efforts have been made for the construction of aryl and vinyl sulfides, among them transition metal-free direct C-H bond sulfenylation has developed rapidly and became an efficient and eco-friendly synthetic protocol. In recent years, many excellent research achievements were presented and a range of sulfenylated alkenes and arenes were synthesized using this strategy. The recent five-year progress in direct sulfenylation of C-H bond on alkenes and arenes under transition metal-free conditions is reviewed and the corresponding reaction mechanisms are discussed.
  • 加载中
    1. [1]

      (a) Kvasnika, M.; Urban, M.; Dickinson, N. J.; Sarek, J. Nat. Prod. Rep. 2015, 32, 1303.
      (b) Meng, D.; Chen, W.; Zhao, W. J. Nat. Prod. 2007, 70, 824.
      (c) Cremlyn, R. J. An Introduction to Organosulfur Chemistry, Wiley, New York, 1996.
      (d) Iino, H.; Usui, T.; Hanna, J.-I. Nat. Commun. 2015, 5, 6828.
      (e) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 11, 1596.

    2. [2]

      (a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
      (b) Kim, S.; Dahal, N.; Kesharwani, T. Tetrahedron Lett. 2013, 54, 4373.

    3. [3]

      (a) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
      (b) Wu, D.; Pisula, W.; Haberecht, M. C.; Feng, X.; Müllen, K. Org. Lett. 2009, 11, 5686.
      (c) Yang, S. M.; Shie, J. J.; Fang, J. M.; Nandy, S. K.; Chang, Y. Y. J. Org. Chem. 2002, 67, 5208.

    4. [4]

      (a) Carretero, J. C. Chem. Commun. 2011, 47, 2207.
      (b) Pellisier, H. RSC Catalysis Series 2, Royal Society of Chemistry, Cambridge, 2009.

    5. [5]

      (a) Kausar, A.; Zulfiqar, S.; Sarwar, M. I. Pol. Rev. 2014, 54, 185.
      (b) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471.
      (c) Spassky, N. Phosphorus Sulfur Silicon Relat. Elem. 1993, 74, 71.

    6. [6]

      (a) Hartwig, J. F. Nature 2008, 455, 314.
      (b) Lu, Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156.
      (c) Lu, Q.-Q.; Zhang, J.; Zhao, G.-L.; Qi, Y.; Wang, H.-M.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.

    7. [7]

      (a) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 2007, 3431.
      (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
      (c) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.

    8. [8]

    9. [9]

    10. [10]

      (a) Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R. E. P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. J. Nat. Prod. 2007, 70, 439.
      (b) Nielsen, S. F.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000, 43, 2217.
      (c) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900.

    11. [11]

      (a) Varun, B. V.; Gadde, K.; Prabhu, K. R. Org. Lett. 2015, 17, 2944.
      (b) Cao, H.; Yuan, J.; Liu, C.; Hu, X.-Q.; Lei, A.-W. RSC Adv. 2015, 5, 41493.
      (c) Siddaraju, Y.; Prabhu, K. R. Org. Lett. 2016, 18, 6090.
      (d) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2018, 83, 2986.
      (e) Wang, D.; Liu, Z.; Wang, Z.; Ma, X.; Yu, P. Green Chem. 2019, 21, 157.
      (f) Chen, Q.; Yu, G.; Wang, X.; Ou, Y.; Huo, Y. Green Chem. 2019, 21, 798.

    12. [12]

      (a) Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20, 984.
      (b) Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.-Y.; Wu, Y.; Chen, D.; Fan, X.-L. RSC Adv. 2017, 7, 37739.
      (c) Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Tetrahedron 2015, 71, 8885.
      (d) Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.

    13. [13]

      (a) Hiebel, M.; Berteina-Raboin, S. Green Chem. 2015, 17, 937.
      (b) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.
      (c) Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291.
      (d) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
      (e) Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141.

    14. [14]

      Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.  doi: 10.1039/C5GC00403A

    15. [15]

      Wang, H.-H.; Shi, T.; Gao, W.-W.; Wang, Y.-Q.; Li, J.-F.; Jiang, Y.; Hou, Y.-S.; Chen, C.; Peng, X.; Wang, Z. Chem. Asian J. 2017, 12, 2675.  doi: 10.1002/asia.201701163

    16. [16]

      Xiao, F.-H.; Tian, J.-X.; Xing, Q.-Y.; Huang, H.-W.; Deng, G.-J.; Liu, Y.-J. ChemistrySelect 2017, 2, 428.  doi: 10.1002/slct.201601549

    17. [17]

      (a) Shanmugapriya, J.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Eur. J. Org. Chem. 2016, 2016, 1963.
      (b) Huang, W.; Yang, G.-F. Bioorg. Med. Chem. 2006, 14, 8280.

    18. [18]

      Kong, D.-L.; Huang, T.; Liang, M.; Wu, M.-S.; Lin, Q. Org. Biomol. Chem. 2019, 17, 830.  doi: 10.1039/C8OB02800A

    19. [19]

      Fan, W.; Chen, K.-Y.; Chen, Q.-P.; Li, G.-G.; Jiang, B. Org. Biomol. Chem. 2017, 15, 6493.  doi: 10.1039/C7OB01515A

    20. [20]

      (a) Liu, Y.; Badsara, S. S.; Liu, Y.; Lee, C. RSC Adv. 2015, 5, 44299.
      (b) Devi, N.; Rahaman, R.; Sarma, K.; Khan, T.; Barman, P. Eur. J. Org. Chem. 2017, 2017, 1520.
      (c) Rafique, J.; Saba, S.; Rosrio, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 79.
      (d) Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Synthesis 2015, 47, 659.

    21. [21]

      Rodrigues, J.; Saba, S.; Joussef, A. C.; Rafique, J.; Braga, A. L. Asian J. Org. Chem. 2018, 5, 1819.

    22. [22]

      Hazarika, S.; Gogoi, P.; Barman, P. RSC Adv. 2015, 5, 25765.  doi: 10.1039/C5RA00677E

    23. [23]

      Kawashima, H.; Yanagi, T.; Wu, C.-C.; Nogi, K.; Yorimitsu, H. Org. Lett. 2017, 19, 4552.  doi: 10.1021/acs.orglett.7b02147

    24. [24]

      Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Org. Lett. 2015, 17, 3898.  doi: 10.1021/acs.orglett.5b01889

    25. [25]

      Nalbandian, C. J.; Brown, Z. E.; Alvarez, E.; Gustafson, J. L. Org. Lett. 2018, 20, 3211.  doi: 10.1021/acs.orglett.8b01066

    26. [26]

      Böhm, M. J.; Golz, C.; Rüter, I.; Alcarazo, M. Chem.-Eur. J. 2018, 24, 15026.  doi: 10.1002/chem.201802806

    27. [27]

      (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
      (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (d) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941.

    28. [28]

      (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415.
      (b) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
      (c) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
      (d) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.

    29. [29]

      Jereb, M.; Gosak, K. Org. Biomol. Chem. 2015, 13, 3103.  doi: 10.1039/C4OB02633K

    30. [30]

      Horvat, M.; Jereb, M.; Iskra, J. Eur. J. Org. Chem. 2018, 2018, 3837.  doi: 10.1002/ejoc.201800551

    31. [31]

      Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Ouamba, J.-M.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem., Int. Ed. 2017, 56, 169.  doi: 10.1002/anie.201609574

    32. [32]

      Liu, S.; Zeng, X.; Xu, B. Asian J. Org. Chem. 2019, 8, 1372.  doi: 10.1002/ajoc.201900358

    33. [33]

      Lu, S.; Chen, W.; Shen, Q. Chin. Chem. Lett. 2019, 30, 2279.

    34. [34]

      Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486.  doi: 10.1021/acs.joc.6b01178

    35. [35]

      Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. M. RSC Adv. 2015, 5, 108030.  doi: 10.1039/C5RA24351C

    36. [36]

      Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. Green Chem. 2016, 18, 1538.  doi: 10.1039/C5GC02292D

    37. [37]

      Xu, Z.; Lu, G.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804.  doi: 10.1039/C6OB02823C

    38. [38]

      Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100.  doi: 10.1002/adsc.201600846

    39. [39]

      Yan, Q.; Jiang, L.; Yi, W.-B.; Liu, Q.; Zhang, W. Adv. Synth. Catal. 2017, 359, 2471.  doi: 10.1002/adsc.201700270

    40. [40]

      Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934.

    41. [41]

      (a) Zhao, X.; Wei, A.; Yang, B.; Li, T.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175.
      (b) Zhao, X.; Zheng, X.; Tian, M.; Sheng, J.; Tong, Y.; Lu, K. Tetrahedron 2017, 73, 7233.

    42. [42]

      Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467.  doi: 10.1021/acs.orglett.6b01026

    43. [43]

      Liu, J.; Zhao, X.; Jiang, L.; Yi, W.-B. Adv. Synth. Catal. 2018, 360, 4012.  doi: 10.1002/adsc.201800702

    44. [44]

      Fernandez-Salas, J.; Pulis, A.; Procter, D. J. Chem. Commun. 2016, 52, 12364.  doi: 10.1039/C6CC07627K

    45. [45]

      Chen, D.; Feng, Q.; Yang, Y.; Cai, X.; Wang, F.; Huang, S. Chem. Sci. 2017, 8, 1601.  doi: 10.1039/C6SC04504A

    46. [46]

      (a) Yang, X.; Yan, R. Org. Biomol. Chem. 2017, 15, 3571.
      (b) Wang, T.; Yang, F.; Tian, S. Adv. Synth. Catal. 2015, 357, 928.
      (c) Rahaman, R.; Devi, N.; Sarmaa, K.; Barman, P. RSC Adv. 2016, 6, 10873.
      (d) Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Org. Biomol. Chem. 2015, 13, 3314.
      (e) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 4697.

    47. [47]

      Pang, X.; Xiang, L. K.; Yang, X. D.; Yan, R. L. Adv. Synth. Catal. 2016, 358, 321.  doi: 10.1002/adsc.201500943

    48. [48]

      Zhao, X.; Li, T. J.; Zhang, L. P.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131.  doi: 10.1039/C5OB02193F

    49. [49]

      Zhao, X.; Deng, Z. J.; Wei, A. Q.; Li, B. Y.; Lu, K. Org. Biomol. Chem. 2016, 14, 7304.  doi: 10.1039/C6OB01006G

    50. [50]

    51. [51]

      Li, J.; Zhu, D.; Lv, L.; Li, C.-J. Chem. Sci. 2018, 9, 5781.  doi: 10.1039/C8SC01669K

    52. [52]

      Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315.  doi: 10.1021/jacs.7b08685

    53. [53]

      (a) Wadman, M. Nature 2006, 440, 277
      (b) Williams, R. B.; Norris, A.; Slebodnick, C.; Merola, J.; Miller, J. S.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. J. Nat. Prod. 2005, 68, 1371.
      (c) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.
      (d) Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2016, 18, 6424.

    54. [54]

      Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Niu, B.; Ding, Y. RSC Adv. 2015, 5, 59861.  doi: 10.1039/C5RA10763F

    55. [55]

      Ding, Y.; Zhao, W.; Li, Y.; Xie, P.; Wu, W.; Zhou, A.; Huang, Y.; Liu, Y. Org. Biomol. Chem. 2016, 14, 1428.  doi: 10.1039/C5OB02073E

    56. [56]

      Guo, T. Synth. Commun. 2017, 47, 2053.  doi: 10.1080/00397911.2017.1364766

    57. [57]

      Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.-H.; Ge, H.-B.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167.  doi: 10.1021/acs.joc.5b01602

    58. [58]

      Liu, W.-J.; Wang, S.-H.; Cai, Z.-H.; Li, Z.-Y.; Liu, J.-W.; Wang, A.-D. Synlett 2018, 29, 116.  doi: 10.1055/s-0036-1588549

    59. [59]

      Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584.

    60. [60]

      Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.  doi: 10.1002/ajoc.201700677

    61. [61]

      Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084.  doi: 10.1021/acs.joc.7b00073

    62. [62]

      Xiao, F.-H.; Wang, D.; Yuan, S.; Huang, H.; Deng, G.-J. RSC Adv. 2018, 8, 23319.

    63. [63]

      Fu, H.; Zhao, B.-T.; Zhu, W.-M. Tetrahedron Letters 2019, 60, 124.  doi: 10.1016/j.tetlet.2018.11.072

    64. [64]

      Yang, F.-L.; Gui, Y.; Yu, B.-K.; Jin, Y.-X.; Tian, S.-K. Adv. Synth. Catal. 2016, 358, 3368.  doi: 10.1002/adsc.201600795

    65. [65]

      (a) Bao, Y.; Yang, X.-Q.; Zhou, Q.-F.; Yang, F. L.; Org. Lett. 2018, 20, 1966.
      (b) Bao, Y.; Zhong, L.-Y.; Hou, Q.; Zhou, Q.-F.; Yang, F.-L. Chin. J. Chem. 2018, 36, 1063.

    66. [66]

      Deng, L.-L.; Liu, Y.-Y. ACS Omega 2018, 3, 11890.  doi: 10.1021/acsomega.8b01946

    67. [67]

      Guo, T.; Wei, X.-N. Synlett 2017, 28, 2499.  doi: 10.1055/s-0036-1589083

    68. [68]

      Yang, Z.; Yan, Y.; Li, A.; Liao, J.; Zhang, L.; Yang, T.; Zhou, C. New J. Chem. 2018, 42, 14738.  doi: 10.1039/C8NJ03461C

    69. [69]

      Dong, Y.-T.; Jin, Q.; Zhou, L.; Chen, J. Org. Lett. 2016, 18, 5708.  doi: 10.1021/acs.orglett.6b02939

    70. [70]

      Bu, M.; Lu, G.; Cai, C. Org. Chem. Front. 2017, 4, 266.  doi: 10.1039/C6QO00622A

    71. [71]

      Li, G.; Zhang, G.; Deng, X.; Qu, K.; Wang, H.; Wei, W.; Yang, D. Org. Biomol. Chem. 2018, 16, 8015.

  • 加载中
    1. [1]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    4. [4]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    5. [5]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    6. [6]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    7. [7]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    8. [8]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    9. [9]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    10. [10]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    11. [11]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    12. [12]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    13. [13]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    14. [14]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    17. [17]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    18. [18]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    19. [19]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    20. [20]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

Metrics
  • PDF Downloads(21)
  • Abstract views(1375)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return