Citation: Jiang Xiaoying, Yao Chuansheng, Tong Chuo, Bai Renren, Zhou Tao, Xie Yuanyuan. Selective Oxidation of Sulfides/Disulfides to Sulfoxides/ Thiosulfonates Using t-Butyl Hydroperoxide (TBHP) without Catalyst[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1752-1759. doi: 10.6023/cjoc201912039 shu

Selective Oxidation of Sulfides/Disulfides to Sulfoxides/ Thiosulfonates Using t-Butyl Hydroperoxide (TBHP) without Catalyst

  • Corresponding author: Xie Yuanyuan, xyycz@zjut.edu.cn
  • Received Date: 26 December 2019
    Revised Date: 10 March 2020
    Available Online: 31 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21576239)the National Natural Science Foundation of China 21576239

Figures(4)

  • A novel and simple method for the selectively oxidation of sulfides to sulfoxides and oxidation of disulfides to thiosulfonates in the presence of t-butyl hydroperoxide (TBHP) has been established. The oxidation system has the advantages of avoiding the use of any catalyst and additive, possessing a broad substrate scope and high efficiency. Desired sulfoxides and thiosulfonates products were obtained in moderate to good yields. Furthermore, a plausible mechanism of the reaction is proposed. The results of control experiments revealed that a radical pathway was involved in this oxidation.
  • 加载中
    1. [1]

      (a) Carreno, M. C. Chem. Rev. 1995, 95, 1717.
      (b) Fernández, I.; Khiar, N. Chem. Rev. 2003, 103, 3651.
      (c) Hartz, R. A.; Arvanitis, A. G.; Arnold, C.; Rescinito, J. P.; Hung, K. L.; Zhang, G.; Wong, H.; Langley, D. R.; Gilligan, P. J.; Trainor, G. L. Bioorg. Med. Chem. Lett. 2006, 16, 934.
      (d) Weidner, J. P.; Block, S. S. J. Med. Chem. 1964, 7, 671.
      (e) Block, S. S.; Weidner, J. P. Dev. Ind. Microbiol. 1963, 4, 213.

    2. [2]

      Maryam, E.; Majid, H.; Hossein, O.; Lida, F. Iran. J. Chem. Chem. Eng. 2017, 36, 21.
       

    3. [3]

      Lindberg, P.; Weidolf, L. US 5877192, 1998.

    4. [4]

      (a) Hinsberger, S.; Hüsecken, K.; Groh, M.; Negri, M.; Haupenthal, J.; Hartmann, R. W. J. Med. Chem. 2013, 56, 8332.
      (b) Tan, D.; Štrukil, V.; Mottillo C.; Friščić, T. Chem. Commun. 2014, 50, 5248.
      (c) Prasit, P.; Wang, Z.; Brideau, C.; Chan, C.-C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Thérien, M.; Vickers, P.; Wong, E.; Xu, L.-J.; Young, R. N.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D. Bioorg. Med. Chem. Lett. 1999, 9, 1773.
      (d) Liu, F.; Luo, X. Q.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y. Bioorg. Med. Chem. 2008, 16, 3632.
      (e) Seto, M.; Miyamoto, N.; Aikawa, K.; Aramaki, Y.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Shiraishi, M. Bioorg. Med. Chem. 2005, 13, 363.
      (f) Santelli-rouvier, C.; Barrer, J. M.; Farrell, C. M.; Sharples, D.; Thill, B.; Barbe, J. Eur. J. Med. Chem. 2004, 39, 1029.
      (g) Zhao, Q. Q.; Li, Y. Q.; Xiong, L. X.; Wang, Q. M. J. Agric. Food Chem. 2010, 58, 4992.

    5. [5]

      (a) Mellah, M.; Voituriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133.
      (b) Sipos, G.; Drinkel, E. E.; Dorta, R. Chem. Soc. Rev. 2015, 44, 3834.
      (c) Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang M.; Liao, J. J. Am. Chem. Soc. 2015, 137, 13760.
      (d) Prilezhaeva, E. N. Russ. Chem. Rev. 2001, 70, 897.
      (e) Fernández I.; Khiar, N. Chem. Rev. 2003, 103, 3651.
      (f) Burr S. K.; Padwa, A. Chem. Rev. 2004, 104, 2401.
      (g) Nguyen, M. H.; Imanishi, M.; Kurogi T.; Smith III, A. B. J. Am. Chem. Soc. 2016, 138, 3675.

    6. [6]

      (a) Furukawa, N.; Akutagawa, K.; Yoshiaki, T.; Oae, S. Tetrahedron Lett. 1981, 22, 2989.
      (b) Bentley, H. R.; Mcdermott, E. E.; Whitehead, J. K. Nature 1950, 165, 735.
      (c) Wang, Y. Y.; Hong, X. C.; Deng, Z. X. Chin. J. Org. Chem. 2012, 32, 825(in Chinese). (王娅娅, 洪学传, 邓子新, 有机化学, 2012, 32, 825.)
      (d) Siemeister, G.; Lucking, U.; Wengner, A. M.; Lienau, P.; Steinke, W.; Schatz, C.; Mumberg, D.; Ziegelbauer, K. Mol. Cancer Ther. 2012, 11, 2265.

    7. [7]

      (a) Cross, P. E.; Arrowsmith, J. E.; Thomas, G. N.; Gwilt, M.; Burges, R. A.; Higgins, A. J. J. Med. Chem. 1990, 33, 1151.
      (b) Murai, S.; Haga, T.; Fujikawa, K.; Sakashita, N.; Shiga, K. Symposium Series 1991, 443, 98.
      (c) Tumula, V. R.; Bondwal, S.; Bisht, P.; Pendem, C.; Kumar, J. React. Kinet., Mech. Catal. 2012, 107, 449.

    8. [8]

      (a) Legros, J.; Dehli, J. R.; Bolm, C. Adv. Synth. Catal. 2005, 347, 19.
      (b) Fernandez, I.; Khiar, N. Chem. Rev. 2003, 103, 3651.
      (c) Kobayashi, C.; Ogawa, C.; Konishi, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 6610.
      (d) Wojaczynska, E.; Wojaczynski, J. Chem. Rev. 2010, 110, 4303.

    9. [9]

      (a) Gallardo-Godoy, A.; Torres-Altoro, M. I.; White, K. J.; Barker, E. L.; Nichols, D. E. Bioorg. Med. Chem. 2007, 15, 305.
      (b) Sugata, K.; Song, L.; Nakamura, M.; Ueki, S.; Fajer, P. G.; Arata, T. J. Mol. Biol. 2009, 386, 626.
      (c) Zefirof, N. S.; Zyk, N. V.; Beloglazkina, E. K.; Kutateladze, A. G. Sulfur Rep. 1993, 14, 223.

    10. [10]

      Manesh, A. A.; Eshbala, F. H.; Hemmati, S.; Veisi, H. RSC Adv. 2015, 5, 70265.  doi: 10.1039/C5RA06182B

    11. [11]

      Gasparrini, F.; Giovannoli, M.; Maresca, L.; Natile, G.; Palmieri, G. Synth. Commun. 1984, 14, 1111.  doi: 10.1080/00397918408059643

    12. [12]

      (a) Scarso, A.; Strukul, G. Adv. Synth. Catal. 2005, 347, 1227.
      (b) Legros, J.; Bolm, C. Chem.-Eur. J. 2005, 11, 1086.
      (c) Haddadi, H.; Hafshejani, S. M.; Farsani, M. R. Catal. Lett. 2015, 145, 1984.
      (d) Bahrami, K.; Khodaei, M. M.; Khaledian, D. Tetrahedron Lett. 2012, 53, 354.

    13. [13]

      (a) Zhao, L. L.; Zhang, H. Y.; Wang, Y. H. J. Org. Chem. 2016, 81, 129.
      (b) Patnam, P. L.; Bhatt, M.; Singh, R.; Sandeep Saranb, S.; Jain, S. L. RSC Adv. 2016, 6, 60888.
      (c) Zaburdaeva, E. A.; Dodonov, V. A. Russ. Chem. Bull., Int. Ed. 2011, 60, 185.

    14. [14]

      (a) Chen, T. H.; Kwong, K. W.; Lee, N. F.; Ranburger, D.; Zhang, R. Inorg. Chim. Acta 2016, 451, 65.
      (b) Xie, Y. T.; Yuxin Li, Y. X.; Zhou, S.; Zhou, S.; Zhang, Y.; Chen, M. G.; Li, Z. M. Synlett 2018, 29, 340.
      (c) Dong, D. Q.; Chen, W. J.; Chen, D. M.; Li, L. X.; Li, G. H.; Wang, Z. L.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, 3190(in Chinese). (董道青, 陈文静, 陈德茂, 李丽霞, 李光辉, 王祖利, 邓企, 龙姝, 有机化学, 2019, 39, 3190.)

    15. [15]

      Cai, M. T.; Lv, G. S.; Chen, J. X.; Gao, W. X.; Ding, J. C.; Wu, H. Y. Chem. Lett. 2010, 39, 368.  doi: 10.1246/cl.2010.368

    16. [16]

      Lakouraj, M. M.; Tajbakhsh, M.; Shirini, F.; Tamami, A. Synth. Commun. 2005, 35, 775.  doi: 10.1081/SCC-200050940

    17. [17]

      Sobhani, S.; Aryanejad, S.; Maleki, M. F. Synlett 2011, 319.  doi: 10.1002/chin.201122073

    18. [18]

      Luu, T. X. T.; Nguyena, T. T.; Leb, T. N.; Spanget-Larsena, J.; Duus, F. J. Sulfur Chem. 2015, 36, 340.  doi: 10.1080/17415993.2015.1025404

    19. [19]

      Iranpoor, N.; Mohajer, D.; Rezaeifard, A. R. Tetrahedron Lett. 2004, 45, 3811.  doi: 10.1016/j.tetlet.2004.03.082

    20. [20]

      (a) Bulman, P. C.; Buckley, B. R.; Ellott, C.; Chan, Y.; Dreyfus, N.; Marken, F. Synlett 2016, 27, 80.
      (b) Yue, H. L.; Bao, P. L.; Wang, L. L.; Lv, X. X.; Yang, D. S.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463(in Chinese). (岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39, 463.)

    21. [21]

      Zabardasti, A.; Shangaie, S. A. J. Iran. Chem. Soc. 2019, 16, 57.  doi: 10.1007/s13738-018-1480-2

    22. [22]

      (a) Silva, F.; Baker, A.; Stansall, J.; Michalska, W.; Yusubov, M. S.; Graz, M.; Saunders, R.; Evans, S. J. S.; Wirth, T. Eur. J. Org. Chem. 2018, 2134.
      (b) Natarajan, P. Tetrahedron Lett. 2015, 56, 4131.

    23. [23]

      (a) Fareghi-Alamdari, R.; Zekri, N.; Moghadam, A. J.; Farsani, M. R. Catal. Commun. 2017, 98, 71.
      (b) Bayat, Y.; Shirini, F.; Goli-Jolodar, O. J. Mol. Liq. 2018, 265, 517.
      (c) Manesh, A. A.; Eshbala, F. H.; Hemmatiab, S.; Veisi, H. RSC Adv. 2015, 5, 70265.
      (d) Zhang, H.; Qi, L. L. Tetrahedron Lett. 2018, 59, 3171.

    24. [24]

      Gogoi, S. R.; Boruah, J. J.; Sengupta, G.; Saikia, G.; Ahmed, K.; Bania, K. K.; Islam, N. S. Catal. Sci. Technol. 2015, 5, 595.  doi: 10.1039/C4CY00864B

    25. [25]

      Gan, S. Y.; Yin, J. J.; Yao, Y.; Liu, Y.; Chang, D. H.; Dan Zhua, D.; Shi, L. Org. Biomol. Chem. 2017, 15, 2647.  doi: 10.1039/C7OB00021A

    26. [26]

      (a) Rostamnia, S.; Doustkhah, E.; Bahrami, K.; Amini, S. J. Mol. Liq. 2015, 207, 334.
      (b) Voutyritsa, E.; Triandafillidi, I.; Kokotos, C. G. Synthesis 2017, 49, 917.
      (c) Aghajania, M.; Safaei, E.; Karimi, B. Synth. Met. 2017, 233, 63.
      (d) Cravotto, G.; Garella, D.; Carnaroglio, D.; Gaudinoa, E. C.; Rosati, O. Chem. Commun. 2012, 48, 11632.
      (e) Liang, G. G.; Liu, M. C.; Chen, J. X.; Ding, J. C.; Gao, W. X.; Wu, H. Y. Chin. J. Chem. 2012, 30, 1611.
      (f) Peng, Z. H.; Zheng, X.; Zhang, Y. J.; An, D.; Dong, W. R. Green Chem. 2018, 20, 1760.
      (g) Billard, T.; Langlois, B. R. J. Fluorine Chem. 1997, 84, 63.
      (h) Secci, F.; Arca, M.; Frongia, A.; Piras, P. P. Catal. Sci. Technol. 2014, 4, 1407.
      (i) Iranpoor, N.; Firouzabadi, H.; Pourali, A. R. Synlett 2004, 347.
      (j) Peng, S.; Song, Y. X.; He, J. Y.; Tang, S. S.; Tan, J. X.; Cao, Z.; Lin, Y. W.; He, W. M. Chin. Chem. Lett. 2019, 30, 2287.
      (k) Liu, K. J.; Deng, J. H.; Yang, J.; Gong, S. F.; Lin, Y. W.; He, J. Y.; Cao, Z.; He, W. M. Green Chem. 2020, 22, 433.
      (l) Liu, K. J.; Zeng, T. Z.; Zeng, J. L.; Gong, S. F.; He, J. Y.; Lin, Y. W.; Tan, J. X.; Cao, Z.; He, W. M. Chin. Chem. Lett. 2019, 30, 2304.

    27. [27]

      (a) Rostami, A.; Saedmocheshi, N.; Shirvandi, Z. C.R. Chim. 2018, 21, 835.
      (b) Zhang, P. F.; Wang, Y.; Li, H. R.; Antonietti, M. Green Chem. 2012, 14, 1904.

    28. [28]

      Wang, F.; Liu, C.; Liu, G.; Li, W. X.; Liu, J. H. Catal. Commun. 2015, 72, 142.  doi: 10.1016/j.catcom.2015.09.015

    29. [29]

      (a) Veisi, H.; Sajjadifar, S.; Biabri, P. M.; Hemmati, S. Polyhedron 2018, 153, 240.
      (b) Otokesh, S.; Kolvari, E.; Amoozadeh, A.; Koukabi, N. RSC Adv. 2015, 5, 53749.

    30. [30]

      (a) Jiang, J.; Luo, R. C.; Zhou, X. T.; Chen, Y. J.; Jia, H. B. Adv. Synth. Catal. 2018, 360, 4402.
      (b) Hao, H. M.; Wang, Z.; Shi, J. L.; Li, X.; Lang, X. J. ChemCatChem 2018, 10, 4545.
      (c) Xie, L. Y.; Chen, Y. L.; Qin, L.; Wen, Y.; Xie, J. W.; Tan, J. X.; Huang, Y.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 6, 3950.
      (d) Xie, L. Y.; Hu, J. L.; Song, Y. X.; Jia, G. K.; Lin, Y. W.; He, J. H.; Cao, Z.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 19993.

    31. [31]

      (a) Patnam, P. L.; Bhatt, M.; Singh, R.; Saran, S.; Jain, S. RSC Adv. 2016, 6, 60888.
      (b) Li, B. D.; He, P.; Yi, G. Q.; Lin, H. Q.; Yuan, Y. Z. Catal. Lett. 2009, 133, 33.
      (c) Li, Y. J.; Yan, N.; Liu, C. H.; Yu, Y.; Zhao, Y. L. Org. Lett. 2017, 19, 1160.

    32. [32]

      Bock, L.; Miller, G. H.; Schaper, K. J.; Seydel, J. K. J. Med. Chem. 1974, 17, 23.  doi: 10.1021/jm00247a006

    33. [33]

      Hinsberger, S.; Hüsecken, K.; Groh, M.; Negri, M.; Haupenthal, J.; Hartmann, R. W. J. Med. Chem. 2013, 56, 8332.  doi: 10.1021/jm400485e

    34. [34]

      Tan, D.; Štrukil, V.; Mottillo C.; Friščić, T. Chem. Commun. 2014, 50, 5248.  doi: 10.1039/C3CC47905F

    35. [35]

      Prasit, P.; Wang, Z.; Brideau, C.; Chan, C.-C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Thérien, M.; Vickers, P.; Wong, E.; Xu, L.-J.; Young, R. N.; Zamboni, R.; Boyce, S.; Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D. Bioorg. Med. Chem. Lett. 1999, 9, 1773.  doi: 10.1016/S0960-894X(99)00288-7

    36. [36]

      Chau, M. M.; Kice, J. L. J. Am. Chem. Soc. 1976, 98, 7711.  doi: 10.1021/ja00440a043

    37. [37]

      (a) Iranpoor, N.; Firouzabadi, H.; Pourali, A. R. Tetrahedron 2002, 58, 5179.
      (b) Natarajan, P. Tetrahedron Lett. 2015, 56, 4131.

    38. [38]

      Ma, B. C.; Zhao, W.; Zhang, Y. S.; Wu, S. Y.; Ding, Y. RSC Adv. 2014, 4, 30254.

    39. [39]

      Caupene, C.; Boudou, C.; Perrio, S.; Metzner, P. J. Org. Chem. 2005, 70, 2812.  doi: 10.1021/jo0478003

    40. [40]

      Hanson, P.; Ramon, A. A.; Hendrick, J.; Smith, R. L. Org. Biomol. Chem. 2008, 6, 745.  doi: 10.1039/b714707d

    41. [41]

      Blakemore, P. R.; Burge, M. S.; Sephton, M. A. Tetrahedron Lett. 2007, 48, 3999.  doi: 10.1016/j.tetlet.2007.04.031

    42. [42]

      Singh, S.; Donnell, J. S.; Schwan, A. L. Org. Biomol. Chem. 2010, 8, 1712.  doi: 10.1039/b917217c

    43. [43]

      Togo, H.; Nabana, T.; Yamaguchi, K. J. Org. Chem. 2000, 65, 8391.  doi: 10.1021/jo001186n

    44. [44]

      Maitro, G.; Prestat, G.; Madec, D.; Poli, G. J. Org. Chem. 2006, 71, 7449.  doi: 10.1021/jo061359u

    45. [45]

      Zhao, X.; Zheng, X. C.; Yang, B.; Sheng, J. Q.; Lu, K. Org. Biomol. Chem. 2018, 16, 1200.  doi: 10.1039/C7OB02834B

    46. [46]

      Lowe, J. N.; Fulton, D. A.; Chiu, S. H.; Elizarow, A. M.; Cantrill, S. J.; Rowan, S. J.; Stoddart, F. J. Org. Chem. 2004, 69, 4390.  doi: 10.1021/jo030283o

    47. [47]

      Zheng, Z.; Qing, F. L.; Huang, Y. G.; Xu, X. H. Adv. Synth. Catal. 2016, 358, 3477.  doi: 10.1002/adsc.201600633

    48. [48]

      Wakui, T.; Nakamura, Y.; Motoki, S. Bull. Chem. Soc. Jpn. 1978, 51, 3081.  doi: 10.1246/bcsj.51.3081

    49. [49]

      Loudon, J. D.; Livingston, A. J. Chem. Soc. 1935, 896.  doi: 10.1039/jr9350000896

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    3. [3]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    4. [4]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    5. [5]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    6. [6]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    7. [7]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    8. [8]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    9. [9]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    12. [12]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    13. [13]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    14. [14]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    15. [15]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    16. [16]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    17. [17]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    18. [18]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    19. [19]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    20. [20]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

Metrics
  • PDF Downloads(31)
  • Abstract views(1305)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return