Citation: Zhang Yahui, Liu Yang, Miao Jiankang, Hao Wenyan. Copper-Catalyzed Cascade Bicyclization of o-Alkenylphenyl Isothiocyanates with Sodium Azide Leading to the 5H-Benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2426-2432. doi: 10.6023/cjoc201912036 shu

Copper-Catalyzed Cascade Bicyclization of o-Alkenylphenyl Isothiocyanates with Sodium Azide Leading to the 5H-Benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines

  • Corresponding author: Hao Wenyan, wenyanhao@jxnu.edu.cn
  • Received Date: 25 December 2019
    Revised Date: 12 May 2020
    Available Online: 25 May 2020

    Fund Project: the Research Fund of Jiangxi provincial Education Department GJJ160285the Natural Science Foundation of Jiangxi Province 2018BAB203006Project supported by the National Natural Science Foundation of China (No. 21762023), the Natural Science Foundation of Jiangxi Province (No. 2018BAB203006) and the Research Fund of Jiangxi provincial Education Department (No. GJJ160285)National Natural Science Foundation of China 21762023

Figures(4)

  • A simple and efficient method for the preparation of 5H-benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines has been developed. The transformation involved the copper(I)-catalyzed cascade bicyclization of o-alkenylphenyl isothiocyanates with sodium azide to afford corresponding products in moderate to good yields. This present strategy provides an effective way to construct small molecular N-, and S-heterocycles.
  • 加载中
    1. [1]

      (a) Ren, Q. C.; Zhang, S.; Gao, C.; Xu, Z.; Ding, J. W.; Huang, L.; Feng, L. S. World Notes Antibiot. 2017, 38, 238.
      (b) Xie, M. S.; Cheng, X.; Chen, Y. G.; Wu, X. X.; Qua, G. R.; Guo, H. M. Org. Biomol. Chem. 2018, 16, 6890.

    2. [2]

      (a) Peet, N. P.; Baugh, L. E.; Sunder, S.; Lewis, J, E.; Matthews, E. H.; Olberding, E. L.; Shah, D. N. J. Med. Chem. 1986, 29, 2403.
      (b) Li, G. Q.; Li, Z.; Lu, Y. H. Chin. J. Med. Chem. 1996, 6, 50.

    3. [3]

      Poonian, M. S.; Nowoswiat, E. F.; Blount, J. F. J. Med. Chem. 1976, 19, 1017.  doi: 10.1021/jm00230a008

    4. [4]

      Navidpour, L.; Shadnia, H.; Shafaroodi, H. Bioorg. Med. Chem. 2007, 15, 1976.  doi: 10.1016/j.bmc.2006.12.041

    5. [5]

      Singh, V. H.; Chawla, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K. Prog. Med. Chem. 1980, 17, 151.  doi: 10.1016/S0079-6468(08)70159-0

    6. [6]

      (a) Seco, J. M.; de Araújo Farias, M.; Bachs, N. M.; Caballero, A. B.; Salinas-Castillo, A.; Rodríguez Diéguez, A. Inorg. Chim. Acta 2010, 363, 3194.
      (b) Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.
      (c) Fischer, N.; Karaghiosoff, K.; Klapotke, T. M.; Stierstorfer, J. Z. Anorg. Allg. Chem. 2010, 636, 735.
      (d) Klapötke, T. M.; Sabaté, C. M.; Welch, J. M. Eur. J. Inorg. Chem. 2009, 6, 769.
      (e) List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
      (f) Odedra, A.; Seeberger, P. H. Angew. Chem., Int. Ed. 2009, 48, 2699.

    7. [7]

      (a) Yella, R.; Khatun, N.; Rout, S. K.; Patel, B. K. Org. Biomol. Chem. 2011, 9, 3235.
      (b) Seelam, M.; Kammela, P. R.; Shaikh, B.; Tamminana, R.; Bogiri, S. Chem. Heterocycl. Compd. 2018, 54, 535.
      (c) Mandapati, U.; Mandapati, P.; Pinapati, S.; Tamminana, R.; Rudraraju, R. Synth. Commun. 2018, 48, 500.
      (d) L'abbé, G.; Verhelst, G.; Toppet, S. J. Org. Chem. 1977, 42, 1159.
      (e) Han, S. Y.; Lee, J. W.; Kim, H.; Kim, Y.; Lee, S. W.; Gyoung, Y. S. Bull. Korean Chem. Soc. 2012, 33, 55.
      (f) Majji, G.; Sahoo, S. K.; Khatun, N.; Patel, B. K. Eur. J. Org. Chem. 2015, 7534.
      (g) Guin, S.; Rout, S. K.; Gogoi, A.; Nandi, S.; Ghara, K. K.; Patel, B. K. Adv. Synth. Catal. 2012, 354, 2757.
      (h) Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237.
      (i) Sathishkumar, M.; Shanmugavelan, P.; Nagarajan, S.; Dinesh, M.; Ponnuswamy, A. New J. Chem. 2013, 37, 488.

    8. [8]

      (a) Hantzsch, A.; Vagt, A. Annalen 1901, 314, 339.
      (b) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945.
      (c) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2001, 3, 4091.
      (d) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525.
      (e) Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237.
      (f) Kadaba, P. K. J. Org. Chem. 1976, 41, 1073.
      (g) Gyoung, Y. S.; Shim, J. G.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 4193.
      (h) Mancheno, O. G.; Bolm, C. Org. Lett. 2007, 9, 2951.
      (i) Gutmann, B.; Roduit, J. P.; Roberge, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2010, 49, 7101.
      (j) Razzaq, T.; Kappe, C. O. Chem.-Asian J. 2010, 5, 1274.
      (k) Bonnamour, J.; Bolm, C. Chem.-Eur. J. 2009, 15, 4543.
      (l) Lang, L. M.; Li, B. J.; Liu, W.; Jiang, L.; Xu, Z.; Yin, G. Chem. Commun. 2010, 46, 448.
      (m) Kantam, M. L.; Shiva Kumar, K. B.; Sridhar, C. Adv. Synth. Catal. 2005, 347, 1212.
      (n) Alterman, M.; Hallberg. A. J. Org. Chem. 2000, 65, 7984.
      (o) Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80, 3908.

    9. [9]

      Miao, J. K.; Zhang, Y. H.; Sang, X. Y.; Hao, W. Y. Org. Biomol. Chem. 2019, 17, 2336.  doi: 10.1039/C8OB03220C

    10. [10]

      (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
      (b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
      (c) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
      (d) Chemler, S. R.; Fuller, P. H. Chem. Soc. Rev. 2007, 36, 1153.(e
      ) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
      (f) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039.
      (g) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.
      (h) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
      (i) Yuan, C. C.; Tu, G. L.; Zhao, Y. S. Org. Lett. 2017, 19, 356.
      (c) Tu, G. L.; Yuan, C. C.; Li, Y. T.; Zhang, J. Y.; Zhao, Y. S. Angew. Chem., Int. Ed. 2018, 57, 15597.

    11. [11]

      (a) Rao, R. K.; Naidu, A. B.; Sekar, G. Org. Lett. 2009, 11, 1923.
      (b) Bhadra, S.; Adak, L.; Samanta, S.; Islam, A. K. M. M.; Mukherjee, M.; Ranu, B. C. J. Org. Chem. 2010, 75, 8533.
      (c) Melkonyan, F.; Topolyan, A.; Karchava, A.; Yurovskaya, V. Tetrahedron 2011, 67, 6826.
      (d) Jangili, P.; Kashanna, J.; Das, B. Tetrahedron Lett. 2013, 54, 3453.
      (e) Liu, Z.; Chen, Y. Tetrahedron Lett. 2009, 50, 3790.
      (f) Feng, E.; Huang, H.; Zhou, Y.; Ye, D.; Jiang, H.; Liu, H. J. Org. Chem. 2009, 74, 2846.
      (g) Chen, D.; Shen, G.; Bao, W. Org. Biomol. Chem. 2009, 7, 4067.
      (h) Sequeira, F. C.; Chemler, S. R. Org. Lett. 2012, 14, 4482.
      (i) Deb, M. L.; Dey, S. S.; Bento, I.; Barros, M. T.; Maycock, C. D. Angew. Chem., Int. Ed. 2013, 52, 9791.
      (j) Xiong, T.; Li, Y.; Bi, X.; Lv, Y.; Zhang, V. Angew. Chem., Int. Ed. 2011, 50, 7140.
      (k) Li, Y.; Li, Z.; Xiong, T.; Zhang, Q.; Zhang, X. Org. Lett. 2012, 14, 3522.

    12. [12]

      (a) Basak, A.; Ghosh, S. C.; Bhowmick, T.; Das, A. K.; Bertolasi, V. Tetrahedron Lett. 2002, 43, 5499.
      (b) Khangarot, R. K.; Kaliappan, K. P. Eur. J. Org. Chem. 2011, 6117.
      (c) Grzeszczyk, B.; Polawska, K.; Shaker, Y. M.; Stecko, S.; Mames, A.; Woznica, M.; Chmielewski, M.; Furman, B. Tetrahedron 2012, 68, 10633.
      (d) Saito, T.; Kikuchi, T.; Tanabe, H.; Yahiro, J.; Otani, T. Tetrahedron Lett. 2009, 50, 4969.
      (e) Mames, A.; Stecko, S.; Mikolajczyk, P.; Soluch, M.; Furman, B.; Chmielewski, M. J. Org. Chem. 2010, 75, 7580.
      (f) Ye, M. C.; Zhou, J.; Tang, Y. J. Org. Chem. 2006, 71, 3576.
      (g) Stecko, S.; Mames, A.; Furman, B.; Chmielewski, M. J. Org. Chem. 2009, 74, 3094.
      (h) Zhang, X.; Hsung, R. P.; Li, H.; Zhang, Y.; Johnson, W. L.; Figueroa, R. Org. Lett. 2008, 10, 3477.
      (i) Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
      (j) Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 4082.
      (k) Ye, M. C.; Zhou, J.; Huang, Z. Z.; Tang, Y. Chem. Commun. 2003, 2554.
      (l) Zhao, L.; Li, C. J. Chem.-Asian J. 2006, 1, 203.
      (m) Liang, J.; Chen, J.; Du, F.; Zeng, X.; Li, L.; Zhang, H. Org. Lett. 2009, 11, 2820.

    13. [13]

      (a) Ma, D.; Geng, Q.; Zhang, H.; Jiang, Y. Angew. Chem., Int. Ed. 2010, 49, 1291.
      (b) Dai, C.; Sun, X.; Tu, X.; Wu, L.; Zhan, D.; Zeng, Q. Chem. Commun. 2012, 48, 5367.
      (c) Yang, D.; Liu, H.; Yang, H.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2009, 351, 1999.
      (d) Chen, D.; Wu, J.; Yang, J.; Huang, L.; Xiang, Y.; Bao, W. Tetrahedron Lett. 2012, 53, 7104.
      (e) Huang, W. S.; Xu, R.; Dodd, R.; Shakespeare, W. C. Tetrahedron Lett. 2013, 54, 5214.
      (f) Chen, D.; Wang, Z. J.; Bao, W. J. Org. Chem. 2010, 75, 5768.
      (g) Kaneko, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2013, 15, 2502.
      (h) Shen, C.; Zhang, P. F.; Sun, Q.; Bai, S. Q.; Andy Hor, T. S.; Liu, X. G. Chem. Soc. Rev. 2015, 44, 291.
      (i) Kaiser, D.; Klodr, I.; Oost, R.; Neuhaus, J.; Maulide, N. Chem. Rev. 2019, 119, 8701.
      (j) Sangeetha, S.; Muthupandi, P.; Sekar, G. Org. Lett. 2015, 17, 6006.
      (k) Soria-Castro, S.; Andrada, D. M.; Caminos, D. A.; Argüello, J. E.; Robert, M.; Peñéñory, A. B. J. Org. Chem. 2017, 82, 11464.

    14. [14]

      (a) Duran, F.; Leman, L.; Ghini, A.; Burton, G.; Dauban, P.; Dodd, R. H. Org. Lett. 2002, 4, 2481.
      (b) Allen, S. E.; Walvoord, R. R.; Padillasalinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.

    15. [15]

      (a) Hao, W. Y.; Zeng, J. B.; Cai, M. Z. Chem. Commun. 2014, 50, 11686.
      (b) Hao, W. Y.; J. Huang, J.; Jie, S. S.; Cai, M. Z. Eur. J. Org. Chem. 2015, 6655.
      (c) Hao, W. Y.; Sang, X. Y.; J. Jiang, J.; Cai, M. Z. Tetrahedron Lett. 2016, 57, 1511.
      (d) Hao, W. Y.; Sang, X. Y.; Jiang, J.; Cai, M. Z. Tetrahedron Lett. 2016, 57, 4207.
      (e) Hao, W. Y.; Jiang, Y. Y.; Cai, M. Z. J. Org. Chem. 2014, 79, 3634.

    16. [16]

      (a) Miao, J. K.; Sang, X. Y.; Wang, Y.; Deng, S.
      F.; Hao, W. Y. Org. Biomol. Chem. 2019, 17, 6994.
      (b) Hao, W. Y.; Zhang, T. L.; Cai, M. Z. Tetrahedron 2013, 69, 9219.
      (c) Zou, F. H.; Chen, X. W.; Hao, W. Y. Tetrahedron 2017, 73, 758.
      (d) Hao, W. Y.; Tian, J.; Li, W.; Shi, R. Y.; Huang, Z. L.; Lei, A. W. Chem.-Asian J. 2016, 11, 1664.
      (e) Hao, W. Y.; Sha, Y. C.; Deng, Y.; Luo, Y.; Zeng, L.; Tang, S.; Weng, Y.; Chiang, C.-W.; Lei, A. W. Chem.-Eur. J. 2019, 25, 4931.

    17. [17]

      (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
      (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.

    18. [18]

      (a) Benati, L.; Calestani, G.; Leadini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Stazzari, S.; Zanardi, G. J. Org. Chem. 2003, 68, 3454.
      (b) Saito, T.; Nihei, H.; Otani, T.; Suyama, T.; Furukawa, N.; Saito, M. Chem. Commun. 2008, 172.

  • 加载中
    1. [1]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    2. [2]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    3. [3]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    4. [4]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    5. [5]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    6. [6]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    9. [9]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    12. [12]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    13. [13]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    14. [14]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    15. [15]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    16. [16]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    17. [17]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    18. [18]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    19. [19]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    20. [20]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

Metrics
  • PDF Downloads(6)
  • Abstract views(1140)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return