Citation: Zhu Zhongzhen, Qiao Yu, Zhang Zihao, Gu Mingzhen, Wang Jin, Gao Zhiyu, Guo Wenhao, Liu Mingming, Li Rong. Design, Synthesis and Antitumor Evaluation of Novel Small Molecule Extracellular Regulated Protein Kinase (ERK) Inhibitors[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1983-1990. doi: 10.6023/cjoc201912033 shu

Design, Synthesis and Antitumor Evaluation of Novel Small Molecule Extracellular Regulated Protein Kinase (ERK) Inhibitors

  • Corresponding author: Li Rong, aydlirong@163.com
  • Received Date: 23 December 2019
    Revised Date: 26 April 2020

    Fund Project: National Natural Science Foundation of China (No. 81972040)National Natural Science Foundation of China 81972040

Figures(4)

  • Extracellular regulated protein kinase (ERK) is a key kinase in the development of cancer. 12 urea compounds containing morpholin rings were designed and synthesized in search of novel ERK inhibitors by using merging strategy. The structures of all compounds were confirmed by 1H NMR, 13C NMR and HRMS. ERK kinase activity and cell proliferation test results indicate that most of the target compounds have moderately inhibitory effects on human colorectal cancer cells SW480 and HCT-116, especially the IC50 of 1-(4-fluorobenzyl)-3-(5-(4-morpholinophenyl)pyridin-2-yl)urea (18f) reaches 0.36 and 0.55 μmol/L, respectively, and has low toxicity to normal cells L02 (>10 μmol/L). At the same time, 18f can inhibit ERK kinase activity (IC50=0.051 μmol/L) and phosphorylation level, but does not affect total ERK expression and upstream upstream activation of mitogen-activated extracellular signal-regulated kinase (MEK) activation. These research provides important reference for the further study of novel benzylpyridylurea ERK inhibitors.
  • 加载中
    1. [1]

      Roskoski, R. Jr. Pharmacol. Res. 2012, 66, 105.  doi: 10.1016/j.phrs.2012.04.005

    2. [2]

      Roberts, P. J.; Der, C. J. Oncogene 2007, 26, 3291.  doi: 10.1038/sj.onc.1210422

    3. [3]

      Uehling, D. E.; Harris, P. A. Bioorg. Med. Chem. Lett. 2015, 25, 4047.  doi: 10.1016/j.bmcl.2015.07.093

    4. [4]

      Morris, E. J.; Jha, S.; Restaino, C. R.; Dayananth, P.; Zhu, H.; Cooper, A.; Carr, D.; Deng, Y.; Jin, W.; Black, S.; Long, B.; Liu, J.; Dinunzio, E.; Windsor, W.; Zhang, R.; Zhao, S.; Angagaw, M. H.; Pinheiro, E. M.; Desai, J.; Xiao, L.; Shipps, G.; Hruza, A.; Wang, J.; Kelly, J.; Paliwal, S.; Gao, X.; Babu, B. S.; Zhu, L.; Daublain, P.; Zhang, L.; Lutterbach, B. A.; Pelletier, M. R.; Philippar, U.; Siliphaivanh, P.; Witter, D.; Kirschmeier, P.; Bishop, W. R.; Hicklin, D.; Gilliland, D. G.; Jayaraman, L.; Zawel, L.; Fawell, S.; Samatar, A. A. Cancer Discovery 2013, 3, 742.  doi: 10.1158/2159-8290.CD-13-0070

    5. [5]

      Blake, J. F.; Burkard, M.; Chan, J.; Chen, H.; Chou, K. J.; Diaz, D.; Dudley, D. A.; Gaudino, J. J.; Gould, S. E.; Grina, J.; Hunsaker, T.; Liu, L.; Martinson, M.; Moreno, D.; Mueller, L.; Orr, C.; Pacheco, P.; Qin, A.; Rasor, K.; Ren, L.; Robarge, K.; Shahidi-Latham, S.; Stults, J.; Sullivan, F.; Wang, W.; Yin, J.; Zhou, A.; Belvin, M.; Merchant, M.; Moffat, J.; Schwarz, J. B. J. Med. Chem. 2016, 59, 5650.

    6. [6]

      Bhagwat, S. V.; McMillen, W. T.; Cai, S.; Zhao, B.; Whitesell, M.; Shen, W.; Kindler, L.; Flack, R. S.; Wu, W.; Anderson, B.; Zhai, Y.; Yuan, X. J.; Pogue, M.; Van Horn, R. D.; Rao, X.; McCann, D.; Dropsey, A. J.; Manro, J.; Walgren, J.; Yuen, E.; Rodriguez, M. J.; Plowman, G. D.; Tiu, R. V.; Joseph, S.; Peng, S. B. Mol. Cancer Ther. 2020, 19, 325.  doi: 10.1158/1535-7163.MCT-19-0183

    7. [7]

      Lim, J.; Kelley, E. H.; Methot, J. L.; Zhou, H.; Petrocchi, A.; Chen, H.; Hill, S. E.; Hinton, M. C.; Hruza, A.; Jung, J. O.; Maclean, J. K.; Mansueto, M.; Naumov, G. N.; Philippar, U.; Raut, S.; Spacciapoli, P.; Sun, D.; Siliphaivanh, P. J. Med. Chem. 2016, 59, 6501.

    8. [8]

      Heightman, T. D.; Berdini, V.; Braithwaite, H.; Buck, I. M.; Cassidy, M.; Castro, J.; Courtin, A.; Day, J. E. H.; East, C.; Fazal, L.; Graham, B.; Griffiths-Jones, C. M.; Lyons, J. F.; Martins, V.; Muench, S.; Munck, J. M.; Norton, D.; O'Reilly, M.; Palmer, N.; Pathuri, P.; Reader, M.; Rees, D. C.; Rich, S. J.; Richardson, C.; Saini, H.; Thompson, N. T.; Wallis, N. G.; Walton, H.; Wilsher, N. E.; Woolford, A. J.; Cooke, M.; Cousin, D.; Onions, S.; Shannon, J.; Watts, J.; Murray, C. W. J. Med. Chem. 2018, 61, 4978.

    9. [9]

      Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa, T. Org. Lett. 2011, 13, 5766.  doi: 10.1021/ol202267t

    10. [10]

      Sun, C. L.; Liang, C. X.; Huang, P.; Harris, G. D.; Guan, H. P. US 20040220189, 2004.

    11. [11]

      Monte, F. L.; Kramer, T.; Bolander, A.; Plotkin, B.; Eldar- Finkelman, H.; Fuertes, A.; Dominguez, J.; Schmidt, B. Bioorg. Med. Chem. Lett. 2011, 21, 5610.  doi: 10.1016/j.bmcl.2011.06.131

    12. [12]

      Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886.  doi: 10.1021/acs.orglett.5b00932

    13. [13]

      Patel, G.; Karver, C. E.; Behera, R.; Guyett, P. J.; Sullenberger, C.; Edwards, P.; Roncal, N. E.; Mensa-Wilmot, K.; Pollastri, M. P. J. Med. Chem. 2013, 56, 3820.

    14. [14]

      Dow, R. L.; Ammirati, M.; Bagley, S. W.; Bhattacharya, S. K.; Buckbinder, L.; Cortes, C.; El-Kattan, A. F.; Ford, K.; Freeman, G. B.; Guimaraes, C. R. W.; Liu, S.; Niosi, M.; Skoura, A.; Tess, D. J. Med. Chem. 2018, 61, 3114.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    9. [9]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    10. [10]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    11. [11]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    12. [12]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    17. [17]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    18. [18]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

Metrics
  • PDF Downloads(5)
  • Abstract views(1230)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return