Citation: Yan Feng, Cai Shuang, Wen Wu, Wen Wei, Li Bojie, Wang Liansheng, Zhu Lei. Recent Advances and Applications in N-Methylation of Amines and Imines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1874-1890. doi: 10.6023/cjoc201912031 shu

Recent Advances and Applications in N-Methylation of Amines and Imines

  • Corresponding author: Li Bojie, bojie.li@hbeu.edu.cn Wang Liansheng, wangls@hbeu.edu.cn Zhu Lei, lei.zhu@hbeu.edu.cn
  • Received Date: 22 December 2019
    Revised Date: 5 April 2020
    Available Online: 17 April 2020

    Fund Project: The Hubei University Excellent Young and Middle-Aged Science and Technology Innovation Team Project T201816The Opening Fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica BCMM201805Project supported by the National Natural Science Foundation of China (No. 21774029), the Hubei University Excellent Young and Middle-Aged Science and Technology Innovation Team Project (No. T201816), the Opening Fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica (No. BCMM201805), the Natural Science Foundation of Xiaogan City (No. XGKJ201910047), the "Chutian Scholar" Program of Hubei Province (Lei Zhu), and the High-Level Master's Thesis Cultivation Project of Hubei Engineering UniversityThe Natural Science Foundation of Xiaogan City XGKJ201910047The "Chutian Scholar" Program of Hubei Province (Lei Zhu) XGKJ201910047Project supported by the National Natural Science Foundation of China 21774029

Figures(39)

  • N-Methylation of amines and imines is one of the most important reactions for C-N bond formation. It is widely utilized for both laboratary research and industrial applications. Traditional methylation reactions involve the use of flammable, explosive and toxic starting materials. In contrast, newly developed methods have overcome this point and provide a mild strategy. In this transformation, C1 carbon source for the methyl group is important which determines the type of catalyst, reaction conditions and substrate scope. Herein, the research progress for the N-methylation of amines and imines is summarized based on different C1 carbon source.
  • 加载中
    1. [1]

      Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, J. C. Angew. Chem., Int. Ed. 2013, 52, 5129.  doi: 10.1002/anie.201301202

    2. [2]

      Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 9127.  doi: 10.1002/anie.200903957

    3. [3]

      Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.  doi: 10.1021/ja903574e

    4. [4]

      Jacquet, O., Gomes, C. D. N., Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.  doi: 10.1021/ja211527q

    5. [5]

      Arakara, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer·, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. Rev. 2001, 101, 953.  doi: 10.1021/cr000018s

    6. [6]

      Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.  doi: 10.1021/cr068357u

    7. [7]

      Wang, W.; Wang, S.-P.; Ma, X.-B.; Gong, J.-L. Chem. Soc. Rev. 2011, 40, 3703.  doi: 10.1039/c1cs15008a

    8. [8]

      Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 611.  doi: 10.1039/C3CY00948C

    9. [9]

      Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.  doi: 10.1002/anie.201105516

    10. [10]

      Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323.  doi: 10.1002/anie.201201282

    11. [11]

      Jacquet, O.; Gomes, C. D. N.; Ephritikhine, M.; Cantat, T. ChemCatChem 2013, 5, 117.  doi: 10.1002/cctc.201200732

    12. [12]

      Li, Y.; Fang, X.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 9568.  doi: 10.1002/anie.201301349

    13. [13]

      Tlili, A.; Frogneux, X.; Blondiaux, E.; Cantat, T. Angew. Chem., Int. Ed. 2014, 53, 2543.  doi: 10.1002/anie.201310337

    14. [14]

      Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156.
       

    15. [15]

      Jacquet, O.; Frognuex, X.; Gomes, C. D. N.; Cantat, T. Chem. Sci. 2013, 4, 2127.  doi: 10.1039/c3sc22240c

    16. [16]

      Blondiaux, E.; Pouessel, J.; Cantat, T. Angew. Chem., Int. Ed. 2014, 53, 12186.  doi: 10.1002/anie.201407357

    17. [17]

      Beydoun, K.; Stein, T. v.; Klankermayer, J.; Lertner, W. Angew. Chem., Int. Ed. 2013, 52, 9554.
       

    18. [18]

      Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2014, 53, 11010.  doi: 10.1002/anie.201403711

    19. [19]

      Cui, X.; Dai, X.; Zhang, Y.; Deng, Y.; Shi, F. Chem. Sci. 2014, 5, 649.  doi: 10.1039/C3SC52676C

    20. [20]

      Cui, X.; Zhang, Y.; Deng, Y.; Shi, F. Chem. Commun. 2014, 50, 13521.  doi: 10.1039/C4CC05119J

    21. [21]

      Kon, K.; Siddiki, S. M. A. H.; Onodera, W.; Shimizu, K. Chem.- Eur. J. 2014, 20, 6264.  doi: 10.1002/chem.201400332

    22. [22]

      Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Ma, Z.; Gao, X.; Liu, Z. Green Chem. 2015, 17, 4189.  doi: 10.1039/C5GC01386K

    23. [23]

      Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Ji, G.; Liu, Z. RSC Adv. 2015, 5, 19613.  doi: 10.1039/C5RA00380F

    24. [24]

      Yang, Z.; Yu, B.; Zhang, H.; Zhao, Y.; Yu, C.; Ma, Z.; Ji, G.; Gao, X.; Han, B.; Liu, Z. ACS Catal. 2016, 6, 1268.  doi: 10.1021/acscatal.5b02583

    25. [25]

      Liger, F.; Eijsbout, T.; Cadarossanesaib, F.; Tourvieille, C.; Bars, D. L.; Billard, T. Eur. J. Org. Chem. 2015, 6434.
       

    26. [26]

      Du, X.-L.; Tang, G.; Bao, H.-L.; Jiang, Z.; Zhong, X.-H.; Su, D. S.; Wang, J.-Q. ChemSusChem 2015, 8, 3489.  doi: 10.1002/cssc.201500486

    27. [27]

      Lucero, G.-S; Marcos, F.-A; Juventino, J. G. Organometallics 2015, 34, 763.  doi: 10.1021/om501176u

    28. [28]

      Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton. Trans. 2015, 44, 18138.  doi: 10.1039/C5DT03506F

    29. [29]

      Chen, W.-C.; Shen, J.-S.; Jurca, T.; Peng, C.-J.; Lin, Y.-H.; Wang, Y.-P.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Angew. Chem., Int. Ed. 2015, 54, 15422.
       

    30. [30]

      Nguyen, T. V. Q.; Yoo, W.-J.; Kobayashi, S. Adv. Synth. Catal. 2016, 358, 452.  doi: 10.1002/adsc.201500875

    31. [31]

      Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Angew. Chem., Int. Ed. 2017, 56, 7425.  doi: 10.1002/anie.201702734

    32. [32]

      Li, G.; Chen, J.; Zhu, D.-Y.; Chen, Y.; Xia, J.-B. Adv. Synth. Catal. 2018, 360, 2364.  doi: 10.1002/adsc.201800140

    33. [33]

      Sorribes, I.; Junge, K.; Beller, M. Chem.-Eur. J. 2014, 20, 7878.  doi: 10.1002/chem.201402124

    34. [34]

      Savourey, S.; Lefèvre, G.; Berthet, J.-C.; Cantat, T. Chem. Commun. 2014, 50, 14033.  doi: 10.1039/C4CC05908E

    35. [35]

      Fu, M.-S.; Shang, R.; Cheng, W.-M.; Fu, Y. Angew. Chem., Int. Ed. 2015, 54, 9042.  doi: 10.1002/anie.201503879

    36. [36]

      Zhu, L.; Li, B.-J.; Wang, S.; Wang, W.; Wang, L.-S.; Ding, L.; Qin, C.-Q. Polymers 2018, 10, 385.  doi: 10.3390/polym10040385

    37. [37]

      Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.-J.; Wang, L.-S.; Zhu, L. Nanomaterials 2018, 8, 326.  doi: 10.3390/nano8050326

    38. [38]

      Zhu, L.; Wang, L.-S.; Li, B.-J.; Li. W.; Fu. B.-Q. Catal. Sci. Technol. 2016, 6, 6172.  doi: 10.1039/C6CY00674D

    39. [39]

      Andrew, K. G.; Summers, D. M.; Donnelly, L. J.; Denton, R. M. Chem. Commun. 2016, 52, 1855.  doi: 10.1039/C5CC08881J

    40. [40]

      Qiao, C.; Liu, X.-F.; Liu, X.; He, L.-N. Org. Lett. 2017, 19, 1490.  doi: 10.1021/acs.orglett.7b00551

    41. [41]

      Natte, K.; Neumann, H.; Beller, M.; Jagadeesh, R. V. Angew. Chem., Int. Ed. 2017, 56, 6384.  doi: 10.1002/anie.201612520

    42. [42]

      Chen, Y. Chem.-Eur. J. 2019, 25, 3405.  doi: 10.1002/chem.201803642

    43. [43]

      Dominguez-Huerta A.; Dai X.-J.; Zhou, F.; Querard, P.; Qiu, Z.; Ung, S.; Liu, W.; Li, J.-B.; Li, C.-J. Can. J. Chem. 2019, 97, 67.
       

    44. [44]

      Xu, C.-P.; Xiao, Z.-H.; Zhuo, B.-Q.; Wang, Y.-H.; Huang, P.-Q. Chem. Commun. 2010, 46, 7834.  doi: 10.1039/c0cc01487g

    45. [45]

      Yan, T.; Feringa, B. L.; Barta, K. Sci. Adv. 2017, 3, eaao6494.  doi: 10.1126/sciadv.aao6494

    46. [46]

      Zhang, L.; Zhang, Y.; Deng, Y.; Shi, F. RSC. Adv. 2015, 5, 14514.  doi: 10.1039/C4RA13848A

    47. [47]

      Tsarev, V. N.; Morioka, Y.; Caner, J.; Wang, Q.; Ushimaru, R.; Kudo, A.; Naka, H.; Saito, S. Org. Lett. 2015, 17, 2530.  doi: 10.1021/acs.orglett.5b01063

    48. [48]

      Dang, T. T.; Ramalingam, B.; Seayad, A. M. ACS Catal. 2015, 5, 4082.  doi: 10.1021/acscatal.5b00606

    49. [49]

      Campos, J.; Sharninghausen, L. S.; Manas, M. G.; Crabtree, R. H. Inorg. Chem. 2015, 54, 5079.  doi: 10.1021/ic502521c

    50. [50]

      Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016, 7, 12641.  doi: 10.1038/ncomms12641

    51. [51]

      Bruneau-Voisine, A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J.-B. J. Catal. 2017, 347, 57.  doi: 10.1016/j.jcat.2017.01.004

    52. [52]

      Liu, Z.; Yang, Z.; Yu, X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z. Adv. Synth. Catal. 2017, 359, 4278.  doi: 10.1002/adsc.201701044

    53. [53]

      Goyal, V.; Gahtori, J.; Narani, A.; Gupta, P.; Bordoloi, A.; Natte, K. J. Org. Chem. 2019, 84, 15389.  doi: 10.1021/acs.joc.9b02141

    54. [54]

      Liang, R.; Li, S.; Wang, R.; Lu, L.; Li, F. Org. Lett. 2017, 19, 5790.  doi: 10.1021/acs.orglett.7b02723

    55. [55]

      Zhu, L.; Wang, L.-S.; Li, B.-J.; Fu, B.-Q.; Zhang, C.-Q.; Li, W. Chem. Commun. 2016, 52, 6371.  doi: 10.1039/C6CC01944G

    56. [56]

      Jiang, X.; Wang, C.; Wei, Y.; Xue, D.; Liu, Z.; Xiao, J. Chem.-Eur. J. 2014, 20, 58.  doi: 10.1002/chem.201303802

    57. [57]

      Wang, H.; Huang, Y.; Dai, X.; Shi, F. Chem. Commun. 2017, 53, 5542.  doi: 10.1039/C7CC02314F

    58. [58]

      Ge, X.; Luo, C.; Qian, C.; Yu, Z.; Chen, X. RSC Adv. 2014, 4, 43195.  doi: 10.1039/C4RA04414B

    59. [59]

      Li, Y.; Sorribes, I.; Vicent, C.; Junge, K.; Beller, M. Chem.-Eur. J. 2015, 21, 16759.  doi: 10.1002/chem.201502917

  • 加载中
    1. [1]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(77)
  • Abstract views(4764)
  • HTML views(1244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return