Citation: Zeng Junliang, Xu Zhihong, Ma Junan. Construction of 3, 4-Disubstituted-3-(difluoromethyl)pyrazoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1105-1116. doi: 10.6023/cjoc201912024 shu

Construction of 3, 4-Disubstituted-3-(difluoromethyl)pyrazoles

  • Corresponding author: Zeng Junliang, junlzeng@tju.edu.cn Ma Junan, majun_an@tju.edu.cn
  • Received Date: 18 December 2019
    Revised Date: 3 February 2020
    Available Online: 23 February 2020

    Fund Project: Project supported by the Key Project of Education Department of Henan Province (Nos. 20A150039)the Key Project of Education Department of Henan Province 20A150039

Figures(33)

  • The CHF2 moiety has been widely utilized in the design of pharmaceuticals and agrochemicals, because this group can act as hydrogen-bonding donor to improve the binding selectivity of biologically active compounds, as a bioisostere to substitute for methyl, methoxy, hydroxy, amino and thiol groups, and as a lipophilic regulator to improve the liposolubility of the active compounds. For example, 3-difluoromethylpyrazole scaffolds are present in many organic compounds that exhibit important biological activities. In this content, there are nearly ten kinds of pesticide molecules on the market that contain 3, 4-disubstituted-3-(difluoromethyl)pyrazole units, with annual sales of up to one billion dollars. In this review, the methods of construction of 3, 4-disubstituted 3-difluoromethylpyrazoles will been briefly summarized that have been reported so far. Four different strategies including using fluorinated reagents as substrates, difluoroacetic acid and its derivatives as fluorine building blocks, difluorodiazonium and others as fluorine building blocks will be introduced.
  • 加载中
    1. [1]

    2. [2]

      Mcloughlin J. I., Louis, St.; Metz S. C.US 2005223526, , 1992.

    3. [3]

      (a) Zierke T., Maywald V., Rack M., Smidt S. P., Keil M., Wolf B., Koradin C.WO 2009133179,, 2009.
      (b) Penning T. D., Talley J. J., Bertenshaw S. R., Carter J. S., Collins P. W., Doctor S., Greveto M. J., Lee L. F., Malecha J. W., Miyashiro J. M., Rogers R. S.; Rogier D. J., Yu S. S., Anderson G. D., Burton E. G., Gregory S. A., Icoboldt C. M., Perkus W. E., Seibert K. A., Veenhuizen W., Zhang Y. Y., Isakson P. C.J. Med. Chem., 1997, 40: 1347.
      (c) Liu X.-H., Zhao W., Shen Z.-H., Xing J.-H., Xu T.-M., Peng W.-L.Eur. J. Med. Chem., 2017, 125: 881.

    4. [4]

    5. [5]

      Xiao H.World Pestic., 2007, 39:12(in Chinese).
      (筱禾, 世界农药, , 2007, 39:12.)

    6. [6]

      Lantzsch R., Pazenok S., Memmel F.WO 2005044804, , 2005.
       

    7. [7]

      Syngenta Participations AG EP 2008996,, 2008.

    8. [8]

      Kremsner J. M., Rack M., Pilger C., Kappe C. O.Tetrahedron Lett., 2009, 50:3665.  doi: 10.1016/j.tetlet.2009.03.103

    9. [9]

      Bolea C., Celanire S., Boudou C., Tang L., Rocher J. P., Liverton N. J.WO 2012009009, , 2012.

    10. [10]

      Fan X.-B., Lin X.-J., Xu X.-M., Huang C., Shen Q.-F.CN 104016920, , 2014.
       

    11. [11]

      Sakamoto R., Kashiwagi H., Maruoka K.Org. Lett., 2017, 19:5126.  doi: 10.1021/acs.orglett.7b02416

    12. [12]

      Zhang Y., Chen Z., Nie J., Zhang F.-G., Ma J.-A.J. Org. Chem., 2019, 84:7148.  doi: 10.1021/acs.joc.9b00819

    13. [13]

      (a) Liu C.-B., Meng W., Li F., Wang S., Nie J., Ma J.-A.Angew. Chem., Int. Ed., 2012, 51: 6227.
      (b) Wang S., Nie J., Zheng Y., Ma J.-A.Org. Lett., 2014, 16: 1606.
      (c) Zhang F.-G., Wei Y., Yi Y. P., Ma J.-A.Org. Lett., 2014, 16: 3122.
      (d) Chen Z., Zheng Y., Ma J.-A.Angew. Chem., Int. Ed., 2017, 56: 4569.

    14. [14]

      Li L.-F., Xu G. Y., Zhao D.-J., Chen M., Wang Y.Fine Chem. Intermed., 2011, 43(6), 17.

    15. [15]

      Oharu K., Kumai S.EP 0694523, , 1995.

    16. [16]

      Nishimiya T., Fuku A., Okamoto S.WO 2008078479, , 2008.
       

    17. [17]

      Talley J. J., Penning T. D., Collins P. W., Rogier D. J., Malecha J. W., Miyachiro J. M., Bertenshaw S. R., Khanna I. K., Granets M. J., Rogers R. S., Carter J. S., Docter S. H., Yu S. S.WO 9515316, , 1995.

    18. [18]

      (a) Singh S. P., Kumar D., Batra H., Naithani R., Rozas I., Elguero J.Can. J. Chem., 2000, 78: 1109.
      (b) Sloop J. C.Bumgardner C. L., Loehle W. D.J. Fluorine Chem., 2002, 118: 135.

    19. [19]

      Norris T., Colon-Cruz R., Ripin D. H. B.Org. Biomol. Chem., 2005, 3:1844.  doi: 10.1039/b500413f

    20. [20]

      Gosselin F., O'Shea P. D., Webster R. A., Reamer R. A., Tillyer R. D., Grabowski E. J. J.Synlett, 2006, 19:3267.
       

    21. [21]

      Gewehr M., Muller B., Grote T., Grammenos W., Schwogler A., Rheinheimer J., Blettner G., Schafer P., Schieweck F., Werner F., Rether J., Strathmann S., Stierl R., Scherer M.WO 2005123690, , 2005.

    22. [22]

      (a) Wu Z.-B., Hu D.-Y., Kuang J.-Q., Cai H., Wu S. X., Xue W.Molecules, 2012, 17: 14205.
      (b) Sun J.-L., Zhou Y.-M.Molecules, 2015, 20: 4383.
      (c) Liu X.-H., Zhao W., Shen Z.-H., Xing J.-H., Xu T.-M., Peng W.-L.Eur. J. Med. Chem., 2017, 125: 881.
      (d) Qiao L., Zhai Z.-W., Cai P.-P., Tan C.-X., Weng J.-Q., Han L., Liu X.-H., Zhang Y.-G. J. Heterocycl. Chem., 2019, 56: 2536.

    23. [23]

      Dochnahl M., Keil M., Gotz R.WO 2011054733, , 2010.

    24. [24]

      Huang X.-Y., Shang Y., Wang L.-P., Wang W.Agrochemicals, 2018, 57(10), 703.
       

    25. [25]

      Rack M., Smidt S. P., Lohr S., Keil M., Dietz J., Rheinheimer J., Grote T., Zierke T., Lohmann J. K., Sukopp M.WO 2008053043, , 2008.
       

    26. [26]

      Bowden M., Gott B. D., Jackson D. A.WO 2009000442, , 2009.

    27. [27]

      Iaroshenko V. O., Specowius V., Vlach K., Vilches-Herrera M., Ostrovskyi D., Mkrtchyan S., Villinger A., Langer P.Tetrahedron, 2011, 67:5663.  doi: 10.1016/j.tet.2011.05.085

    28. [28]

      Braun M. J., Jaunzems J.WO 2012010692, , 2012.

    29. [29]

      Sosnovskikh V. Y., Irgashev R. A.Moshkin V. S.Kodess M. I.Russ. Chem. Bull., 2008, 57:2146.

    30. [30]

      Lantzsch R., Wolfgang J., Pazenok S.WO 2005042468, , 2004.

    31. [31]

      Zierke T., Maywald V., Rack M., Smidt S. P., Keil M., Wolf B., Koradin C.US 20110040096, , 2009.
       

    32. [32]

      Zierke T., Rheinheimer J., Rack M., Smidt S. P., Altenhoff A. G., Schmidt-Leithoff J., Challand N.WO 2008145740, , 2008.
       

    33. [33]

      Pazenok S., Lui N., Heinrich J. D., Wollner T.WO 2009106230, , 2009.
       

    34. [34]

      Wang M.-C., Li Q.-Y., Luo Z.-B.CN 107663172, , 2016.
       

    35. [35]

      Gilman H., Jones R. G.J. Am. Chem. Soc., 1943, 65:1458.  doi: 10.1021/ja01248a005

    36. [36]

      (a) Morandi B., Carreira E. M.Angew. Chem., Int. Ed., 2011, 50: 9085.
      (b) Morandi B., Carreira E. M.Org. Lett., 2011, 13: 5984.
      (c) Morandi B., Carreira E. M.Angew. Chem., Int. Ed., 2010, 49: 938.
      (d) Artamonov O. S., Mykhailiuk P. K., Voievoda N. M., Volochnyuk D. M., Komarov I. V.Synthesis, 2010, 443.
      (e) Li F., Nie J., Sun L., Ma J.-A.Angew. Chem., Int. Ed., 2013, 52: 6255.
      (f) Peng X., Xiao M.-Y., Zeng J.-L., Zhang F.-G., Ma J.-A.Org. Lett., 2019, 21: 4808.
      (g) Zhang Z.-Q., Zheng M.-M., Xue X.-S., Marek I., Zhang F.-G., Ma J.-A.Angew Chem., Int. Ed., 2019, 58: 18191.

    37. [37]

      Mykhailiuk P. K.Angew Chem., Int. Ed., 2015, 54:6558.  doi: 10.1002/anie.201501529

    38. [38]

      Mertens L., Hock K. J., Koenigs R. M.Chem.-Eur. J., 2016, 22:9542.  doi: 10.1002/chem.201601707

    39. [39]

      Li J., Yu X.-L., Cossy J., Lv S.-Y., Mykhailiuk P. K., Wu Y.Eur. J. Org. Chem., 2017, 266.
       

    40. [40]

      Britton J., Jamison T. F.Angew. Chem., Int. Ed., 2017, 56:8823.  doi: 10.1002/anie.201704529

    41. [41]

      Zeng J.-L., Chen Z., Zhang F.-G., Ma J.-A.Org. Lett., 2018, 20:4562.  doi: 10.1021/acs.orglett.8b01854

    42. [42]

      Linderman R. J., Kirollos K. S.Tetrahedron Lett., 1989, 30:2049.  doi: 10.1016/S0040-4039(01)93708-6

    43. [43]

      (a) Hamper B. C.J. Fluorine Chem., 1990, 48:123.
      (b) Hamper B. C., Kurtzweil M. L., Beck J. P.J. Org. Chem., 1992, 57:5680.

    44. [44]

      (a) England D. C., Melby L. R., Dietrich M. A., Lindsey R. V.J. Am. Chem. Soc., 1960, 82(19), 5116.
      (b) Wakselman C.Tordeux M.J. Chem. Soc., Chem. Commun., 1975, 956.
      (c) Sergiy P.; Florence G.; Grégory L.; Norbert L.; Jean-Pierre, V, ; Frédéric R. L.Eur. J. Org. Chem., 2013, 4249.
      (d) Etienne S., Baptiste R., Armen P., Jean-Pierre V., Sergii P., Frédéric R. L.Org. Lett., 2015, 17(18), 4510.
      (e) Etienne S.Grégory L., Jean-Pierre V., Norbert L., Sergiy P., Frédéric R. L.Eur. J. Org. Chem., 2018, 3792.

    45. [45]

      Nett M., Grote T., Lohmann J. K., Dietz J., Smidt S. P., Rack M., Zierke T.WO 2008152138, , 2008.

    46. [46]

      Pazenok S., Lui N., Neeff A.WO 2008022777, , 2008.

    47. [47]

      Nett M., Grote T., Lohmann J. K., Dietz J., Smidt S. P., Rack M., Zierke T.US 2010084994, , 2010.
       

  • 加载中
    1. [1]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    2. [2]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    16. [16]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    17. [17]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    20. [20]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

Metrics
  • PDF Downloads(28)
  • Abstract views(2325)
  • HTML views(436)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return