Citation: Zeng Junliang, Xu Zhihong, Ma Junan. Construction of 3, 4-Disubstituted-3-(difluoromethyl)pyrazoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1105-1116. doi: 10.6023/cjoc201912024 shu

Construction of 3, 4-Disubstituted-3-(difluoromethyl)pyrazoles

  • Corresponding author: Zeng Junliang, junlzeng@tju.edu.cn Ma Junan, majun_an@tju.edu.cn
  • Received Date: 18 December 2019
    Revised Date: 3 February 2020
    Available Online: 23 February 2020

    Fund Project: Project supported by the Key Project of Education Department of Henan Province (Nos. 20A150039)the Key Project of Education Department of Henan Province 20A150039

Figures(33)

  • The CHF2 moiety has been widely utilized in the design of pharmaceuticals and agrochemicals, because this group can act as hydrogen-bonding donor to improve the binding selectivity of biologically active compounds, as a bioisostere to substitute for methyl, methoxy, hydroxy, amino and thiol groups, and as a lipophilic regulator to improve the liposolubility of the active compounds. For example, 3-difluoromethylpyrazole scaffolds are present in many organic compounds that exhibit important biological activities. In this content, there are nearly ten kinds of pesticide molecules on the market that contain 3, 4-disubstituted-3-(difluoromethyl)pyrazole units, with annual sales of up to one billion dollars. In this review, the methods of construction of 3, 4-disubstituted 3-difluoromethylpyrazoles will been briefly summarized that have been reported so far. Four different strategies including using fluorinated reagents as substrates, difluoroacetic acid and its derivatives as fluorine building blocks, difluorodiazonium and others as fluorine building blocks will be introduced.
  • 加载中
    1. [1]

    2. [2]

      Mcloughlin J. I., Louis, St.; Metz S. C.US 2005223526, , 1992.

    3. [3]

      (a) Zierke T., Maywald V., Rack M., Smidt S. P., Keil M., Wolf B., Koradin C.WO 2009133179,, 2009.
      (b) Penning T. D., Talley J. J., Bertenshaw S. R., Carter J. S., Collins P. W., Doctor S., Greveto M. J., Lee L. F., Malecha J. W., Miyashiro J. M., Rogers R. S.; Rogier D. J., Yu S. S., Anderson G. D., Burton E. G., Gregory S. A., Icoboldt C. M., Perkus W. E., Seibert K. A., Veenhuizen W., Zhang Y. Y., Isakson P. C.J. Med. Chem., 1997, 40: 1347.
      (c) Liu X.-H., Zhao W., Shen Z.-H., Xing J.-H., Xu T.-M., Peng W.-L.Eur. J. Med. Chem., 2017, 125: 881.

    4. [4]

    5. [5]

      Xiao H.World Pestic., 2007, 39:12(in Chinese).
      (筱禾, 世界农药, , 2007, 39:12.)

    6. [6]

      Lantzsch R., Pazenok S., Memmel F.WO 2005044804, , 2005.
       

    7. [7]

      Syngenta Participations AG EP 2008996,, 2008.

    8. [8]

      Kremsner J. M., Rack M., Pilger C., Kappe C. O.Tetrahedron Lett., 2009, 50:3665.  doi: 10.1016/j.tetlet.2009.03.103

    9. [9]

      Bolea C., Celanire S., Boudou C., Tang L., Rocher J. P., Liverton N. J.WO 2012009009, , 2012.

    10. [10]

      Fan X.-B., Lin X.-J., Xu X.-M., Huang C., Shen Q.-F.CN 104016920, , 2014.
       

    11. [11]

      Sakamoto R., Kashiwagi H., Maruoka K.Org. Lett., 2017, 19:5126.  doi: 10.1021/acs.orglett.7b02416

    12. [12]

      Zhang Y., Chen Z., Nie J., Zhang F.-G., Ma J.-A.J. Org. Chem., 2019, 84:7148.  doi: 10.1021/acs.joc.9b00819

    13. [13]

      (a) Liu C.-B., Meng W., Li F., Wang S., Nie J., Ma J.-A.Angew. Chem., Int. Ed., 2012, 51: 6227.
      (b) Wang S., Nie J., Zheng Y., Ma J.-A.Org. Lett., 2014, 16: 1606.
      (c) Zhang F.-G., Wei Y., Yi Y. P., Ma J.-A.Org. Lett., 2014, 16: 3122.
      (d) Chen Z., Zheng Y., Ma J.-A.Angew. Chem., Int. Ed., 2017, 56: 4569.

    14. [14]

      Li L.-F., Xu G. Y., Zhao D.-J., Chen M., Wang Y.Fine Chem. Intermed., 2011, 43(6), 17.

    15. [15]

      Oharu K., Kumai S.EP 0694523, , 1995.

    16. [16]

      Nishimiya T., Fuku A., Okamoto S.WO 2008078479, , 2008.
       

    17. [17]

      Talley J. J., Penning T. D., Collins P. W., Rogier D. J., Malecha J. W., Miyachiro J. M., Bertenshaw S. R., Khanna I. K., Granets M. J., Rogers R. S., Carter J. S., Docter S. H., Yu S. S.WO 9515316, , 1995.

    18. [18]

      (a) Singh S. P., Kumar D., Batra H., Naithani R., Rozas I., Elguero J.Can. J. Chem., 2000, 78: 1109.
      (b) Sloop J. C.Bumgardner C. L., Loehle W. D.J. Fluorine Chem., 2002, 118: 135.

    19. [19]

      Norris T., Colon-Cruz R., Ripin D. H. B.Org. Biomol. Chem., 2005, 3:1844.  doi: 10.1039/b500413f

    20. [20]

      Gosselin F., O'Shea P. D., Webster R. A., Reamer R. A., Tillyer R. D., Grabowski E. J. J.Synlett, 2006, 19:3267.
       

    21. [21]

      Gewehr M., Muller B., Grote T., Grammenos W., Schwogler A., Rheinheimer J., Blettner G., Schafer P., Schieweck F., Werner F., Rether J., Strathmann S., Stierl R., Scherer M.WO 2005123690, , 2005.

    22. [22]

      (a) Wu Z.-B., Hu D.-Y., Kuang J.-Q., Cai H., Wu S. X., Xue W.Molecules, 2012, 17: 14205.
      (b) Sun J.-L., Zhou Y.-M.Molecules, 2015, 20: 4383.
      (c) Liu X.-H., Zhao W., Shen Z.-H., Xing J.-H., Xu T.-M., Peng W.-L.Eur. J. Med. Chem., 2017, 125: 881.
      (d) Qiao L., Zhai Z.-W., Cai P.-P., Tan C.-X., Weng J.-Q., Han L., Liu X.-H., Zhang Y.-G. J. Heterocycl. Chem., 2019, 56: 2536.

    23. [23]

      Dochnahl M., Keil M., Gotz R.WO 2011054733, , 2010.

    24. [24]

      Huang X.-Y., Shang Y., Wang L.-P., Wang W.Agrochemicals, 2018, 57(10), 703.
       

    25. [25]

      Rack M., Smidt S. P., Lohr S., Keil M., Dietz J., Rheinheimer J., Grote T., Zierke T., Lohmann J. K., Sukopp M.WO 2008053043, , 2008.
       

    26. [26]

      Bowden M., Gott B. D., Jackson D. A.WO 2009000442, , 2009.

    27. [27]

      Iaroshenko V. O., Specowius V., Vlach K., Vilches-Herrera M., Ostrovskyi D., Mkrtchyan S., Villinger A., Langer P.Tetrahedron, 2011, 67:5663.  doi: 10.1016/j.tet.2011.05.085

    28. [28]

      Braun M. J., Jaunzems J.WO 2012010692, , 2012.

    29. [29]

      Sosnovskikh V. Y., Irgashev R. A.Moshkin V. S.Kodess M. I.Russ. Chem. Bull., 2008, 57:2146.

    30. [30]

      Lantzsch R., Wolfgang J., Pazenok S.WO 2005042468, , 2004.

    31. [31]

      Zierke T., Maywald V., Rack M., Smidt S. P., Keil M., Wolf B., Koradin C.US 20110040096, , 2009.
       

    32. [32]

      Zierke T., Rheinheimer J., Rack M., Smidt S. P., Altenhoff A. G., Schmidt-Leithoff J., Challand N.WO 2008145740, , 2008.
       

    33. [33]

      Pazenok S., Lui N., Heinrich J. D., Wollner T.WO 2009106230, , 2009.
       

    34. [34]

      Wang M.-C., Li Q.-Y., Luo Z.-B.CN 107663172, , 2016.
       

    35. [35]

      Gilman H., Jones R. G.J. Am. Chem. Soc., 1943, 65:1458.  doi: 10.1021/ja01248a005

    36. [36]

      (a) Morandi B., Carreira E. M.Angew. Chem., Int. Ed., 2011, 50: 9085.
      (b) Morandi B., Carreira E. M.Org. Lett., 2011, 13: 5984.
      (c) Morandi B., Carreira E. M.Angew. Chem., Int. Ed., 2010, 49: 938.
      (d) Artamonov O. S., Mykhailiuk P. K., Voievoda N. M., Volochnyuk D. M., Komarov I. V.Synthesis, 2010, 443.
      (e) Li F., Nie J., Sun L., Ma J.-A.Angew. Chem., Int. Ed., 2013, 52: 6255.
      (f) Peng X., Xiao M.-Y., Zeng J.-L., Zhang F.-G., Ma J.-A.Org. Lett., 2019, 21: 4808.
      (g) Zhang Z.-Q., Zheng M.-M., Xue X.-S., Marek I., Zhang F.-G., Ma J.-A.Angew Chem., Int. Ed., 2019, 58: 18191.

    37. [37]

      Mykhailiuk P. K.Angew Chem., Int. Ed., 2015, 54:6558.  doi: 10.1002/anie.201501529

    38. [38]

      Mertens L., Hock K. J., Koenigs R. M.Chem.-Eur. J., 2016, 22:9542.  doi: 10.1002/chem.201601707

    39. [39]

      Li J., Yu X.-L., Cossy J., Lv S.-Y., Mykhailiuk P. K., Wu Y.Eur. J. Org. Chem., 2017, 266.
       

    40. [40]

      Britton J., Jamison T. F.Angew. Chem., Int. Ed., 2017, 56:8823.  doi: 10.1002/anie.201704529

    41. [41]

      Zeng J.-L., Chen Z., Zhang F.-G., Ma J.-A.Org. Lett., 2018, 20:4562.  doi: 10.1021/acs.orglett.8b01854

    42. [42]

      Linderman R. J., Kirollos K. S.Tetrahedron Lett., 1989, 30:2049.  doi: 10.1016/S0040-4039(01)93708-6

    43. [43]

      (a) Hamper B. C.J. Fluorine Chem., 1990, 48:123.
      (b) Hamper B. C., Kurtzweil M. L., Beck J. P.J. Org. Chem., 1992, 57:5680.

    44. [44]

      (a) England D. C., Melby L. R., Dietrich M. A., Lindsey R. V.J. Am. Chem. Soc., 1960, 82(19), 5116.
      (b) Wakselman C.Tordeux M.J. Chem. Soc., Chem. Commun., 1975, 956.
      (c) Sergiy P.; Florence G.; Grégory L.; Norbert L.; Jean-Pierre, V, ; Frédéric R. L.Eur. J. Org. Chem., 2013, 4249.
      (d) Etienne S., Baptiste R., Armen P., Jean-Pierre V., Sergii P., Frédéric R. L.Org. Lett., 2015, 17(18), 4510.
      (e) Etienne S.Grégory L., Jean-Pierre V., Norbert L., Sergiy P., Frédéric R. L.Eur. J. Org. Chem., 2018, 3792.

    45. [45]

      Nett M., Grote T., Lohmann J. K., Dietz J., Smidt S. P., Rack M., Zierke T.WO 2008152138, , 2008.

    46. [46]

      Pazenok S., Lui N., Neeff A.WO 2008022777, , 2008.

    47. [47]

      Nett M., Grote T., Lohmann J. K., Dietz J., Smidt S. P., Rack M., Zierke T.US 2010084994, , 2010.
       

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    9. [9]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    12. [12]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(24)
  • Abstract views(1965)
  • HTML views(418)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return