Citation: Ge Yanyu, Kong Jing, Yang Chenggen, Yang Qian, Zhang Xu. Design and Synthesis of 1, 2-Bis(4-(benzyloxy)phenyl)diselane: A Scavenger for Residual Copper[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1760-1765. doi: 10.6023/cjoc201912022 shu

Design and Synthesis of 1, 2-Bis(4-(benzyloxy)phenyl)diselane: A Scavenger for Residual Copper

  • Corresponding author: Zhang Xu, zhangxu@yzu.edu.cn
  • Received Date: 17 December 2019
    Revised Date: 6 February 2020
    Available Online: 11 March 2020

    Fund Project: Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)

Figures(5)

  • By introducing benzyloxy into the molecule, the as-prepared 1, 2-bis(4-(benzyloxy)phenyl)diselane showed superior activity in copper pollutant elimination over simple diselenides in regardless of their electron-donating or electron-with-drawing substituents. The copper-adsorption process occurred smoothly at room temperature and could completely remove the Cu2+ ions within 4 h. The compound has been successfully employed in our Imatinib base synthetic project to reduce the catalytic Cu residue in product. By using only 1 mol% 1, 2-bis(4-(benzyloxy)phenyl)diselane, the Cu residue in the produced Imatinib base could be depressed to be less than 10-7, showing good application potential of torganoselenium compound in pharmaceutical industry. A novel method for removing copper residue is reported and it may be applied in pharmaceutical industry owing to the safe and metabolizable features of selenium.
  • 加载中
    1. [1]

      (a) Deng, X.; Cao, H.; Chen, C.; Zhou, H.; Yu, L. Sci. Bull. 2019, 64, 1280.
      (b) Lu, L.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W. Chin. Chem. Lett. 2019, 30, 1237.
      (c) Wu, C.; Hong, L.; Shu, H.; Zhou, Q.; Wang, Y.; Sun, M.; Jiang, S.; Cao, Z.; He, W. ACS Sustainable Chem. Eng. 2019, 7, 8798.
      (d) Cao, H.; Liu, M.; Qian, R.; Zhang, X.; Yu, L. Appl. Organomet. Chem. 2019, 33, e4599.
      (e) Liu, Y.; Ling, H.; Chen, C.; Xu, Q.; Yu, L.; Jiang, X. Synlett 2019, 30, 1698.

    2. [2]

      (a) Lu, L.; Zhou, S.; He, W.; Xia, W.; Chen, P.; Yu, X.; Xu, X.; He, W. Org. Biomol. Chem. 2018, 16, 9064.
      (b) Wu, C.; Xiao, H.; Wang, S.; Tang, M.; Tang, Z.; Xia, W.; Li, W.; Zhong, C.; He, W. ACS Sustainable Chem. Eng. 2019, 7, 2169.

    3. [3]

      (a) Prochnow, T.; Maroneze, A.; Back, D. F.; Zeni, G. J. Org. Chem. 2019, 84, 2891.
      (b) Liu, M.; Li, Y.; Yu, L.; Xu, Q.; Jiang, X. Sci. China Chem. 2018, 61, 294.
      (c) Kodama, S.; Saeki, T.; Mihara, K.; Higashimae, S.; Kawaguchi, S. I.; Sonoda, M.; Nomoto, A.; Ogawa, A. J. Org. Chem. 2017, 82, 12477.
      (d) Yu, L.; Huang, X. Synlett 2006, 2136.

    4. [4]

      (a) Cao, H.; Yang, Y.; Chen, X.; Liu, J.; Chen, C.; Yuan, S.; Yu, L. Chin. Chem. Lett. 2020, DOI:10.1016/j.cclet.2020.01.027.
      (b) Xu, W.; Chai, K.; Jiang, Y.; Mao, J.; Wang, J.; Zhang, P.; Shi, Y. ACS Appl. Mater. Interfaces 2019, 11, 17670.
      (c) Cao, K.; Deng, X.; Chen, T.; Zhang, Q.; Yu, L. J. Mater. Chem. A 2019, 7, 10918.
      (d) Zhang, Z.; Chen, G.; Tang, Y. Chem. Eng. J. 2018, 351, 1095.

    5. [5]

      (a) Chen, C.; Cao, Y.; Wu, X.; Cai, Y.; Liu, J.; Xu, L.; Ding, K. Chin. Chem. Lett. 2020, 31, 1078.
      (b) Yang, Y.; Fan, X.; Cao, H.; Chu, S.; Zhang, X.; Xu, Q.; Yu, L. Catal. Sci. Technol. 2018, 8, 5017.
      (c) Jing, X.; Wang, T.; Ding, Y.; Yu, L. Appl. Catal., A 2017, 541, 107.
      (d) Wang, F.; Xu, L.; Sun, C.; Xu, Q.; Huang, J.; Yu, L. Chin. J. Org. Chem. 2017, 37, 2115(in Chinese). (王芳, 徐林, 孙诚, 徐清, 黄杰军, 俞磊, 有机化学, 2017, 37, 2115.)
      (e) Yu, L.; Chen, F.; Ding, Y. ChemCatChem 2016, 8, 1033.
      (f) Wang, Y.; Yu, L.; Zhu, B.; Yu, L. J. Mater. Chem. A 2016, 4, 10828.
      (g) Yu, L.; Bai, Z.; Zhang, X.; Zhang, X.; Ding, Y.; Xu, Q. Catal. Sci. Technol. 2016, 6, 1804.
      (h) Zhang, X.; Sun, J.; Ding, Y.; Yu, L. Org. Lett. 2015, 17, 5840.
      (i) Yu, L.; Wang, J.; Chen, T.; Ding, K.; Pan, Y. Chin. J. Org. Chem. 2013, 33, 1096(in Chinese). (俞磊, 王俊, 陈天, 丁克鸿, 潘毅, 有机化学, 2013, 33, 1096.)

    6. [6]

      (a) Chu, S.; Cao, H.; Chen, T.; Shi, Y.; Yu, L. Catal. Commun. 2019, 129, 105730.
      (b) Depken, C.; Krätzschmar, F.; Rieger, R.; Rode, K.; Breder, A. Angew. Chem., Int. Ed. 2018, 57, 2459.
      (c) Guo, R.; Huang, J.; Zhao, X. ACS Catal. 2018, 8, 926.
      (d) Jin, W.; Zheng, P.; Wong, W.-T.; Law, G.-L. Adv. Synth. Catal. 2017, 359, 1588.

    7. [7]

      (a) Liu, X.; Liang, Y.; Ji, J.; Luo, J.; Zhao, X. J. Am. Chem. Soc. 2018, 140, 4782.
      (b) Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Nat. Commun. 2018, 9, 527.
      (c) Chen, F.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2013, 135, 1232.

    8. [8]

      Gao, G.; Han, J.; Yu, L.; Xu, Q. Synlett 2019, 30, 1703.  doi: 10.1055/s-0037-1612088

    9. [9]

      (a) Zhang, J.; Cao, K.; Zhang, X.; Zhang, Q. Appl. Organomet. Chem. 2020, 34, e5377.
      (b) Jing, X.; Chen, C.; Deng, X.; Zhang, X.; Wei, D.; Yu, L. Appl. Organomet. Chem. 2018, 32, e4332.

    10. [10]

      (a) Liu, C.; Mao, J.; Zhang, X.; Yu, L. Catal. Commun. 2020, 133, 105828.
      (b) Cao, H.; Chen, T.; Yang, C.; Ye, J.; Zhang, X. Synlett 2019, 30, 1683.
      (c) Wang, T.; Jing, X.; Chen, C.; Yu, L. J. Org. Chem. 2017, 82, 9342.
      (d) Jing, X.; Yuan, D.; Yu, L. Adv. Synth. Catal. 2017, 359, 1194.

    11. [11]

      (a) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409.
      (b) Rayman, M. P. Lancet 2012, 379, 1256.
      (c) Młochowski, J.; Wójtowicz-Młochowska, H. Molecules 2015, 20, 10205.
      (d) Meotti, F. C.; Borges, V. C.; Zeni, G.; Rocha, J. B. T.; Nogueira, C. W. Toxicol. Lett. 2003, 143, 9.
      (e) US Pharmacopeial Convention (USP). USP <232>Elemental Impurities-Limits. 40-NF 35, First Supplement, 2017: https://www.usp.org/sites/default/files/usp/document/our-work/chemical-medici-nes/key-issues/232-40-35-1s.pdf

    12. [12]

      (a) Tong, Q.; Zhao, S.; Liu, Y.; Xu, B.; Yu, L.; Fan, Y. Appl. Organomet. Chem. 2020, 34, e5380.
      (b) Luo, Y.; Guo, X.; Lu, W.; Liu, Y.; Yu, L.; Pang, H. Sustainable Energy Fuels 2019, 3, 2572.
      (c) Yang, Y.; Xu, B.; He, J.; Shi, J.; Yu, L.; Fan, Y. Appl. Organomet. Chem. 2019, 33, e5204.
      (d) Yang, Y.; Li, M.; Cao, H.; Zhang, X.; Yu, L. Mol. Catal. 2019, 474, 110450.
      (e) Qiu, C.; Xu, Y.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y.; Liu, C.; Yu, L.; Chen, W.; Su, C. Adv. Sci. 2019, 6, 1801403.
      (f) Wang, F.; Xu, L.; Sun, C.; Yu, L.; Xu, Q. Appl. Organomet. Chem. 2018, 32, e4505.
      (g) Zhao, S.; Xu, B.; Yu, L.; Fan, Y. Chin. Chem. Lett. 2018, 29, 884.
      (h) Zhao, S.; Xu, B.; Yu, L.; Fan, Y. Chin. Chem. Lett. 2018, 29, 475.
      (i) Wang, F.; Xu, L.; Huang, J.; Wu, S.; Yu, L.; Xu, Q.; Fan, Y. Mol. Catal. 2017, 432, 99.
      (j) Chen, F.; Zhang, Y.; Yu, L.; Zhu, S. Angew. Chem., Int. Ed. 2017, 56, 2022.
      (k) Tong, Q.; Gao, Q.; Xu, B.; Yu, L.; Fan, Y. Chin. J. Org. Chem. 2017, 37, 753(in Chinese). (仝庆, 高强, 许波连, 俞磊, 范以宁, 有机化学, 2017, 37, 753.)
      (l) Yu, L.; Han, Z.; Ding, Y. Org. Process Res. Dev. 2016, 20, 2124.

    13. [13]

      (a) Ou, W.; Zou, R.; Han, M.; Yu, L.; Su, C. Chin. Chem. Lett. 2020, DOI:10.1016/j.cclet.2019.12.017.
      (b) Zheng, Y.; Wu, A.; Ke, Y.; Cao, H.; Yu, L. Chin. Chem. Lett. 2019, 30, 937.
      (c) Zhang, H.; Han, M.; Yang, C.; Yu, L.; Xu, Q. Chin. Chem. Lett. 2019, 30, 263.
      (d) Yu, L.; Qian, R.; Deng, X.; Wang, F.; Xu, Q. Sci. Bull. 2018, 63, 1010.
      (e) Cao, H.; Zhu, B.; Yang, Y.; Xu, L.; Yu, L.; Xu, Q. Chin. J. Catal. 2018, 39, 899.
      (f) Zhang, H.; Han, M.; Chen, T.; Xu, L.; Yu, L. RSC Adv. 2017, 7, 48214.
      (g) Yu, L.; Han, M.; Luan, J.; Xu, L.; Ding, Y.; Xu, Q. Sci. Rep. 2016, 6, 30432.

    14. [14]

      (a) Chen, Y.; Zhang, Q.; Jing, X.; Han, J.; Yu, L. Mater. Lett. 2019, 242, 170.
      (b) Chen, F.; Chen, Y.; Cao, H.; Xu, Q.; Yu, L. J. Org. Chem. 2018, 83, 14158.
      (c) Fan, X.; Yi, R.; Wang, F.; Zhang, X.; Xu, Q.; Yu, L. Chin. J. Org. Chem. 2018, 38, 2736.
      (d) Chen, C.; Cao, K.; Wei, Z.; Zhang, Q.; Yu, L. Mater. Lett. 2018, 226, 63.
      (e) Zhang, D.; Wei, Z.; Yu, L. Sci. Bull. 2017, 62, 1325.
      (f) Sengupta, A.; Datta, S.; Su, C.; Herng, T. S.; Ding, J.; Vittal, J. J.; Loh, K. P. ACS Appl. Mater. Interfaces 2016, 8, 16154.
      (g) Yu, L.; Huang, X. Synlett 2007, 1371.

    15. [15]

      Wu, G.; Sun, Y.; Xie, J.; Lu, Y. Ecotoxicol. Environ. Saf. 2019, 181, 308.  doi: 10.1016/j.ecoenv.2019.05.077

    16. [16]

      Zhang, X.; Sun, J.; Chen, T.; Yang, C.; Yu, L. Synlett 2016, 27, 2233.  doi: 10.1055/s-0035-1562498

    17. [17]

      Yu, L.; Wang, J.; Chen, T.; Wang, Y.; Xu, Q. Appl. Organomet. Chem. 2014, 28, 652.  doi: 10.1002/aoc.3175

    18. [18]

      (a) Yu, L.; Meng, J.; Xia, L.; Guo, R. J. Org. Chem. 2009, 74, 5087.
      (b) Yu, L.; Ren, L.; Yi, R.; Wu, Y.; Chen, T.; Guo, R. J. Organomet. Chem. 2011, 696, 2228.
      (c) Yu, L.; Ren, L.; Guo, R.; Chen, T. Synth. Commun. 2011, 41, 1958.

    19. [19]

      Chakraborti, A. K.; Chankeshwara, S. V. J. Org. Chem. 2009, 74, 1367.  doi: 10.1021/jo801659g

  • 加载中
    1. [1]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    2. [2]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    3. [3]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    4. [4]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    5. [5]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    6. [6]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    7. [7]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    8. [8]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    9. [9]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    10. [10]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    11. [11]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    12. [12]

      Lei ZhangChenyang KouKun NiYiwen ChenTongchuan ZhangBaoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836

    13. [13]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    16. [16]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    17. [17]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    18. [18]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    19. [19]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    20. [20]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

Metrics
  • PDF Downloads(4)
  • Abstract views(865)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return