Citation: Wang Guodong, Guo Yanhui, Wan Jieping. Base-Promoted, Metal- and Oxidant-Free C=C Bond Cleavage in Enaminones for Ambient Synthesis of NH2-Amidines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 645-650. doi: 10.6023/cjoc201912018 shu

Base-Promoted, Metal- and Oxidant-Free C=C Bond Cleavage in Enaminones for Ambient Synthesis of NH2-Amidines

  • Corresponding author: Wan Jieping, wanjieping@jxnu.edu.cn
  • Received Date: 12 December 2019
    Revised Date: 16 December 2019
    Available Online: 19 December 2019

    Fund Project: the National Natural Science Foundation of China 21562025Project supported by the National Natural Science Foundation of China (No. 21562025)

Figures(1)

  • The C=C double bond cleavage of NH2-functionalized enaminones has been realized at room temperature to provide various N-sulfonyl amidines by reacting with sulfonyl azides. The reactions take place with good substrate tolerance in the presence of 1, 8-Diazabicyclo[5.4.0]undec-7-ene (DBU) without any metal or oxidant reagent. The 15N-labelling experiment on enaminone indicates that the sulfonyl azide component donates solely the sulfonamide fragment, and the reaction mechanism involving a key decomposition of the in situ generated 1, 2, 3-triazoline intermediate is convictively supported.
  • 加载中
    1. [1]

      For selected reviews, see:
      (a) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977.
      (b) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
      (c) Ruhland, K. Eur. J. Org. Chem. 2012, 2683。
      (d) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
      (e) Wu, X.; Zhu, C. Chem. Rec. 2018, 18, 587.
      (f) Wan, J.-P.; Gao, Y.; Wei, L. Chem. Asian J. 2016, 11, 2092.

    2. [2]

      For selected examples, see:
      (a) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Science 2018, 361, 171.
      (b) He, C.; Guo, S.; Huang, L.; Lei, A. J. Am. Chem. Soc. 2010, 132, 8273.
      (c) Ren, R.; Wu, Z.; Zhu, C. Chem. Commun. 2016, 52, 8160.
      (d) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048.
      (e) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3001.

    3. [3]

      For selected reviews in enaminone-based synthesis, see:
      (a) Fu, L.; Wan, J.-P. Asian J. Org. Chem. 2019, 8, 767.
      (b) Wan, J.-P.; Gao, Y. Chem. Rec. 2016, 16, 1164.
      (c) Elassar, A.-Z. A.; El-Khair, A. A. Tetrahedron 2003, 59, 8463.
      (d) Greenhill, J. V. Chem. Soc. Rev. 1977, 277.

    4. [4]

      (a) Wasserman, H. H.; Ives, J. L. J. Am. Chem. Soc. 1976, 98, 7868.
      (b) Cao, S.; Zhong, S.; Xin, L.; Wan, J.-P.; Wen, C. ChemCatChem 2015, 7, 1478.
      (c) Yu, Q.; Zhang, Y.; Wan, J.-P. Green Chem. 2019, 21, 3436.
      (d) Wan, J.-P.; Lin, Y.; Cao, X.; Liu, Y.; Wei, L. Chem. Commun. 2016, 52, 1270.
      (e) Yang, Y.; Zhong, G.; Fan, J.; Liu, Y. Eur. J. Org. Chem. 2019, 4422.

    5. [5]

      Gan, L.; Gao, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 1064.  doi: 10.1021/acs.joc.8b02670

    6. [6]

      (a) Zhou, P.; Hu, B.; Li, L.; Rao, K.; Yang, J.; Yu, F. J. Org. Chem. 2017, 82, 13268.
      (b) Tian, L.; Guo, Y.; Wei, L.; Wan, J.-P.; Shou, S. Asian J. Org. Chem. 2019, 8, 1484.
      (c) Liu, Y.; Xiong, J.; Wei, L.; Wan, J.-P. Adv. Synth. Catal. 2020, 362, 877.

    7. [7]

      (a) Ni, M.; Zhang, J.; Liang, X.; Jiang, Y.; Loh, T.-P. Chem. Commun. 2017, 53, 12286.
      (b) Chen, J.; Guo, P.; Zhang, J.; Rong, J.; Sun, W.; Jiang, Y.; Luo, T.-P. Angew. Chem. Int. Ed. 2019, 58, 12674.

    8. [8]

      Hu, W.; Zheng, J.; Li, M.; Wu, W.; Liu, H.; Jiang, H. Chin. J. Chem. 2018, 36, 712.  doi: 10.1002/cjoc.201800127

    9. [9]

      (a) Chang, S.; Lee, M.; Jung, D. Y.; Yoo, E. J.; Cho, S. H.; Han, S. K. J. Am. Chem. Soc. 2006, 128, 12366.
      (b) Xu, X.; Li, X.; Ma, L.; Ye, N.; Weng, B. J. Am. Chem. Soc. 2008, 130, 14084.
      (c) Ding, R.; Chen, H.; Xu, Y.-L.; Tang, H.-T.; Chen, Y.-M.; Pan, Y.-M. Adv. Synth. Catal. 2019, 361, 3656.
      (d) Zheng, X.; Wan, J.-P. Adv. Synth. Catal. 2019, 361, 5690.

    10. [10]

      Fusco, R.; Bianchetti, G.; Pocar, D.; Ugo, R. Chem. Ber. 1963, 96, 802.  doi: 10.1002/cber.19630960321

    11. [11]

      (a) Kato, N.; Hamada, Y.; Shioiri, T. Chem. Pharm. Bull. 1984, 32, 2496.
      (b) Gao, T.; Zhao, M.; Meng, X.; Li, C.; Chen, B. Synlett 2011, 1281.
      (c) Efimov, I.; Beliaev, N.; Beryozkina, T.; Slepukhin, P.; Bakulev, V. Tetrahedron Lett. 2016, 57, 1949.
      (d) Bakulev, V. A.; Beryozkina, T.; Thomas, J.; Dehaen, W. Eur. J. Org. Chem. 2018, 262.

    12. [12]

      (a) Chandna, N.; Chandak, N.; Kumar, P.; Kapoor, J. K.; Sharma, P. K. Green Chem. 2013, 15, 2294.
      (b) Chen, S.; Xu, Y.; Wan, X. Org. Lett. 2011, 13, 6152.
      (c) Yang, W.; Huang, D.; Zeng, X.; Luo, D.; Wang, X.; Hu, Y. Chem. Commun. 2018, 54, 8222.
      (d) Chen, J.; Long, W.; Fang, S.; Yang, Y.; Wan, X. Chem. Commun. 2017, 53, 13256.

    13. [13]

      (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
      (b) Yao, B.; Shen, C.; Liang, Z.; Zhang, Y. J. Org. Chem. 2014, 79, 936.
      (c) Murugavel, G.; Punniyamurthy, T. J. Org. Chem. 2015, 80, 6291.
      (d) Shang, Y.; He, X.; Hu, J.; Wu, J.; Zhang, M.; Yu, S.; Zhang, Q. Adv. Synth. Catal. 2009, 351, 2709.

    14. [14]

      (a) van Vliet, K. M.; Polak, L. H.; Siegler, M. A.; van der Vlugt, J. I.; Guerra, C. F.; de Bruin, B. J. Am. Chem. Soc. 2019, 141, 15240.
      (b) Liu, B.; Ning, Y.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. J. Am. Chem. Soc. 2019, 141, 1593.

    15. [15]

      (a) Aswad, M.; Chiba, J.; Tomohiro, T.; Hatanaka, Y. Chem. Commun. 2013, 49, 10242.
      (b) Hajibabaei, K.; Boeini, H. Synlett 2014, 2044.

    16. [16]

      For other known methods, see:
      (a) Mo, D.-L.; Pecak, W. H.; Zhao, M.; Wink, D. J.; Anderson, L. L. Org. Lett. 2014, 16, 3696.
      (b) Zhou, M.; Li, J.; Tian, C.; Sun, X.; Zhu, X.; Cheng, Y.; An, G.; Li, G. J. Org. Chem. 2019, 84, 1015.
      (c) Kim, J.; Stahl, S. S. J. Org. Chem. 2015, 80, 2448.

    17. [17]

      Yi, F.; Sun, Q.; Sun, J.; Fu, C.; Yi, W. J. Org. Chem. 2019, 84, 6780.  doi: 10.1021/acs.joc.9b00538

    18. [18]

      (a) Shang, Z.; Chen, Q.; Xing, L.; Zhang, Y.; Wait, L.; Du, Y. Adv. Synth. Catal. 2019, 361, 4926.
      (b) Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236.
      (c) Guo, Y.; Xiang, Y.; Wei, L.; Wan, J.-P. Org. Lett. 2018, 20, 3971.
      (d) Wan, J.-P.; Cao, S.; Liu, Y. Org. Lett. 2016, 18, 6034.
      (e) Cheng, D.; Deng, Z.; Yan, X.; Wang, M.; Xu, X.; Yan, J. Adv. Synth. Catal. 2019, 361, 5025.
      (f) Wan, J.-P.; Tu, Z.; Wang, Y. Chem.-Eur. J. 2019, 25, 6907.
      (g) Luo, T.; Xu, H.; Liu, Y. ChemistrySelect 2019, 4, 10621.
      (h) Yang, L.; Wei, L.; Wan, J.-P. Chem. Commun. 2018, 54, 7475.
      (i) Yan, R.; Li, X.; Yang, X.; Kang, X.; Xiang, L.; Huang, G. Chem. Commun. 2015, 51, 2573.
      (j) Zhao, Q.; Xiang, H.; Xiao, J.-A.; Xia, P.-J.; Wang, J.-J.; Chen, X.; Yang, H. J. Org. Chem. 2017, 82, 9837.
      (k) Bai F.; Hu, D.; Liu, Y.; Wei, L. Chin. J. Org. Chem. 2018, 38, 2054 (in Chinese).
      (白飞成, 胡德庆, 刘云云, 韦丽, 有机化学, 2018, 38, 2054.)
      (l) Fu, L.; Cao, X.; Wan, J.-P.; Liu, Y. Chin. J. Chem. 2020, 38, 254.

    19. [19]

      (a) Xie, L.-Y.; Fang, T.-G.; Tan, J.-X.; Bang, B.; Cao, Z.; Yang, L.-H.; He, W.-M. Green Chem. 2019, 21, 3858.
      (b) Wan, J.-P.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 4401.
      (c) Yu, H.; Bao, P.; Wang, L.; Lv, X.; Yang, D.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463 (in Chinese).
      (岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39, 463.)
      (d) Du, Y.; Wei, L.; Liu, Y. Heteroatom Chem. 2017, 28, e21401.
      (e) Dong, D.; Chen, W.; Chen, D.; Li, L.; Li, G.; Wang, Z.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, 3190 (in Chinese).
      (董道青, 陈文静, 陈德茂, 李丽霞, 李光辉, 王祖利, 邓企, 龙姝, 有机化学, 2019, 39, 3190.)

    20. [20]

      Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Chem. Commun. 2017, 53, 3228.  doi: 10.1039/C7CC00260B

    21. [21]

      Chandna, N.; Kaur, F.; Kumar, S.; Jain, N. Green Chem. 2017, 19, 4268.  doi: 10.1039/C7GC01593C

    22. [22]

      Baeten, M.; Maes, B. U. W. Adv. Synth. Catal. 2016, 358, 826.  doi: 10.1002/adsc.201501146

  • 加载中
    1. [1]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    2. [2]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    3. [3]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    4. [4]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    5. [5]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    6. [6]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    7. [7]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    8. [8]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    9. [9]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    10. [10]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    11. [11]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    12. [12]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    13. [13]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    14. [14]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    15. [15]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    16. [16]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    17. [17]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    18. [18]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    19. [19]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    20. [20]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

Metrics
  • PDF Downloads(14)
  • Abstract views(1287)
  • HTML views(265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return