Triazine Derivative for Fluorescence Sensing of Zr4+, Fe3+ Ions and Acetone
- Corresponding author: Han Limin, hanlimin@imut.edu.cn Zhang Xiaoyong, 66123@bttc.edu.cn
Citation:
Ma Xuelin, Han Limin, Zhang Xiaoyong, Zhang Yuheng, Wang Li, Yang Kun, Ji Jie. Triazine Derivative for Fluorescence Sensing of Zr4+, Fe3+ Ions and Acetone[J]. Chinese Journal of Organic Chemistry,
;2020, 40(6): 1745-1751.
doi:
10.6023/cjoc201912007
Wang, P.; Okamura, T.; Zhou, H. P.; Sun, W. Y.; Tian, Y. P. Chin. Chem. Lett. 2013, 24(1), 20.
doi: 10.1016/j.cclet.2012.12.010
Xu, H.; Hu, H. C.; Cao, C. S.; Zhao, B. Inorg. Chem. 2015, 54(10), 4585.
doi: 10.1021/acs.inorgchem.5b00113
Wang, J.; Jiang, M.; Yan, L.; Peng, R.; Huangfu, M. J.; Guo, X. X.; Li, Y.; Wu, P. Y. Inorg. Chem. 2016, 55(24), 12660.
doi: 10.1021/acs.inorgchem.6b01815
Yan, W.; Zhang, C.; Chen, S. G.; Han, L. J.; Zheng, H. G. ACS Appl. Mater. Interfaces 2017, 9(19), 1629.
Arici, M. Cryst. Growth Des. 2017, 17(10), 5499.
doi: 10.1021/acs.cgd.7b01024
Li, P.; Zhou, L. J.; Yang, N. N.; Sui, Q.; Gong, T.; Gao, E. Q. Cryst. Growth Des. 2018, 18(11), 7191.
doi: 10.1021/acs.cgd.8b01383
Tang, S. F.; Hou, X. M. Cryst. Growth Des. 2019, 19(1), 45.
Zheng, M.; Tan, H. Q.; Xie, Z. G.; Zhang, L. G.; Jing, X. B.; Sun, Z. C. ACS Appl. Mater. Interfaces 2013, 5(3), 1078.
doi: 10.1021/am302862k
Xu, X. Y.; Yan, B. ACS Appl. Mater. Interfaces 2015, 7(1), 721.
doi: 10.1021/am5070409
Wen, G. X.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Li, D. S.; Zhang, J. Inorg. Chem. 2016, 55(20), 10114.
doi: 10.1021/acs.inorgchem.6b01876
Rao, P. C.; Mandal, S. Inorg. Chem. 2018, 57(19), 11855.
doi: 10.1021/acs.inorgchem.8b02017
Gogoi, C.; Biswas, S. Dalton Trans. 2018, 47(41), 14696.
doi: 10.1039/C8DT03058H
Yu, C. Y.; Sun, X. D.; Zou, L. F.; Li, G. H.; Zhang, L. R.; Liu, Y. L. Inorg. Chem. 2019, 58(6), 4026.
doi: 10.1021/acs.inorgchem.9b00204
He, H. M.; Zhu, Q. Q.; Li, C. P.; Du, M. Cryst. Growth Des. 2019, 19(2), 694.
doi: 10.1021/acs.cgd.8b01271
Jia, H. J.; Han, L. M.; Zhu, N.; Gao, Y. Y.; Wang, Y. Q.; Suo, Q. L. Chin. J. Org. Chem. 2019, 39(6), 1753(in Chinese).
Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Sci. China:Chem. 2019, 62(8), 968.
doi: 10.1007/s11426-019-9449-y
Yu, L.; Qiao, Y. M.; Miao, L. X.; He, Y. Q.; Zhou, Y. Chin. Chem. Lett. 2018, 29(11), 1545.
doi: 10.1016/j.cclet.2018.09.005
Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38(10), 2606(in Chinese).
Sheng, K.; Lu, H. F.; Sun, A. B.; Wan, Y. M.; Liu, Y. T.; Chen, F.; Bian, W. C.; Li, Y.; Kuang, R.; Sun, D. Chin. Chem. Lett. 2019, 30(4), 895.
doi: 10.1016/j.cclet.2019.01.027
Wang, J. H.; Fan, Y. d.; Lee, H. W.; Yi, C. Q.; Cheng, C. M.; Zhao, X.; Yang, M. ACS Appl. Nano Mater. 2018, 1(7), 3747.
doi: 10.1021/acsanm.8b01083
Huang, J. J.; Yu, J. H.; Bai, F. Q.; Xu, J. Q. Cryst. Growth Des. 2018, 18(9), 5353.
doi: 10.1021/acs.cgd.8b00773
Lu, S. Q.; Liu, Y. Y.; Duan, Z. M.; Wang, Z. X.; Li, M. X.; He, X. Cryst. Growth Des. 2018, 18(8), 4602.
doi: 10.1021/acs.cgd.8b00575
Smith, J. A.; Singh-Wilmot, M. A.; Carter, K. P.; Cahill, C. L.; August Ridenour, J. Cryst. Growth Des. 2019, 19(1), 305.
Fan, K.; Bao, S. S.; Nie, W. X.; Liao, C. H.; Zheng, L. M. Inorg. Chem. 2018, 57(3), 1079.
Zhang, H. J.; Fan, R. Q.; Chen, W.; Fan, J. Z.; Dong, Y. W.; Song, Y., Du, X.; Wang, P.; Yang, Y. L. Cryst. Growth Des. 2016, 16(9), 5429.
doi: 10.1021/acs.cgd.6b00903
Zhang, C. H.; Shi, H. Z.; Sun, L. B.; Yan, Y.; Wang, B. L.; Liang, Z. Q.; Wang, L.; Li, J. Y. Cryst. Growth Des. 2018, 18(12), 7683.
doi: 10.1021/acs.cgd.8b01535
Yoon, C. S.; Choi, M. J.; Jun, D. W.; Zhang, Q.; Kaghazchi, P.; Kim, K. H.; Sun, Y. K. Chem. Mater. 2018, 30(5), 1808.
doi: 10.1021/acs.chemmater.8b00619
Yoon, C. S.; Kim, U. H.; Park, G. T.; Kim, S. J.; Kim, K. H.; Kim, J.; Sun, Y. K. Energy Lett. 2018, 3(7), 1634.
doi: 10.1021/acsenergylett.8b00805
Meng, H. M.; Fu, T.; Zhang, X. B.; Wang, N. N.; Tan, W. H.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2012, 84(5), 2124.
doi: 10.1021/ac300005f
Wang, B; Yang, Q.; Guo, C.; Sun, Y. X.; Xie, L. H.; Li, J. R. ACS Appl. Mater. Interfaces 2017, 9(11), 10286.
doi: 10.1021/acsami.7b00918
Xu, M. M.; Kong, X. J.; He, T.; Wu, X. Q.; Xie, L. H.; Li, J. R. Inorg. Chem. 2018, 57(22), 14260.
doi: 10.1021/acs.inorgchem.8b02282
He, P.; Tang, L. J.; Zhong, K. L.; Hou, S. H.; Yan, X. M. Chin. J. Org. Chem., 2017, 37(2), 423(in Chinese).
Yu, L.; Qiao, Y. M.; Miao, L. X.; He, Y. Q.; Zhou, Y. Chin. Chem. Lett. 2018, 29(11), 1545.
doi: 10.1016/j.cclet.2018.09.005
Wang, T.; Liu, Q. H.; Gao, Y, ; Yang, X. Y.; Yang, W. T.; Dang, S. Chin. Chem. Lett. 2016, 27(4), 497.
doi: 10.1016/j.cclet.2016.01.011
Zhang, Q. S.; Wang, J.; Kirillov, A. M.; Dou, W.; Xu, C.; Xu, C. L.; Yang, L. Z.; Fang, R.; Liu, W. S. ACS Appl. Mater. Interfaces 2018, 10(28), 23976.
doi: 10.1021/acsami.8b06103
Zhao, X. X.; Wang, S. L.; Zhang, L. Y.; Liu, S. Y.; Yuan, G. Z. Inorg. Chem. 2019, 58(4), 2444.
Wang, X.; Fan, W. D.; Zhang, M.; Shang, Y. Z.; Wang, Y. T.; Liu, D.; Guo, H. L.; Dai, F. N.; Sun, D. F. Chin. Chem. Lett. 2019, 30(3), 801.
doi: 10.1016/j.cclet.2018.12.009
Huang, W. H.; Ren, J.; Yang, Y. H.; Li, X. M.; Wang, Q.; Jiang, N.; Yu, J. Q.; Wang, F.; Zhang, J.. Inorg. Chem. 2019, 58(2), 1481.
Chen, Z.; Sun, Y. W.; Zhang, L. L.; Sun, D.; Liu, F. L.; Meng, Q. G.; Wang, R. M.; Sun, D. F. Chem. Commun. 2013, 49(98), 11557.
doi: 10.1039/c3cc46613b
Wang, R.; Dong, X. Y.; Xu, H.; Pei, R. B.; Ma, M. L.; Zang, S. Q.; Hou, H. W.; Mak, T. C. W. Chem. Commun. 2014, 50(65), 9153.
doi: 10.1039/C4CC03268C
Karuehanon, W.; Fanfuenha, W.; Rujiwatra, A.; Pattarawarapan, M. Tetrahedron Lett. 2012, 53(27), 3486.
doi: 10.1016/j.tetlet.2012.04.124
Wang, X. S.; Liang, J; Li, L.; Lin, Z. J.; Bag, P. P.; Gao, S. Y.; Huang, Y. B.; Cao, R. Inorg. Chem. 2016, 55(5), 2641.
doi: 10.1021/acs.inorgchem.6b00019
Kolmakov, K. A. J. Heterocycl. Chem. 2008, 45(2), 533.
doi: 10.1007/s10953-008-9298-7
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
Yanqiong Wang , Yaqi Hou , Fengwei Huo , Xu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Yu BAI , Jijiang WANG , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
(a) [L]=2.9 mL, 1×10-5 mol•L-1; [Fe3+]=0.1 mL, 1×10-6~10×10-5 mol•L-1. (b) complexation ratio of L and Fe3+, [Fe3+]=0.1 mL, 1× 10-6~10×10-5 mol•L-1
(a) [L]=2.9 mL, 1×10-5 mol•L-1; [Fe3+]=0.1 mL, 1×10-6~10×10-6 mol• L-1; (b) Detection limit of Fe3+, [Fe3+]=0.1 mL, 1×10-6~10× 10-6 mol•L-1
(a) [L]=2.9 mL, 1×10-5 mol•L-1; [Zr4+]=0.1 mL, 1×10-6~10×10-6 mol•L-1. (b) Complexation ratio of L and Zr4+, [Zr4+]=0.1 mL, 1× 10-6~10×10-6 mol•L-1
(a) [L]=2.9 mL, 1×10-5 mol•L-1; [Zr4+]=0.1 mL, 1×10-5~10×10-5 mol• L-1. (b) Detection limit of Zr4+; [Zr4+]=0.1 mL, 1×10-5~10× 10-5 mol•L-1