Citation: Shuai Bin, Li Zhao-Ming, Qiu Hui, Fang Ping, Mei Tian-Sheng. Nickel-Catalyzed Negishi Coupling of Cyclobutanone Oxime Esters with Aryl Zinc Reagents[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 651-662. doi: 10.6023/cjoc201911016 shu

Nickel-Catalyzed Negishi Coupling of Cyclobutanone Oxime Esters with Aryl Zinc Reagents

  • Corresponding author: Fang Ping, pfang@sioc.ac.cn Mei Tian-Sheng, mei7900@sioc.ac.cn
  • Received Date: 8 November 2019
    Revised Date: 11 December 2019
    Available Online: 19 December 2019

    Fund Project: Project supported by the Strategic Priority Research Program (No. XDB20000000), the National Natural Science Foundation of China (Nos. 21572245, 21772222, 21772220), and the Shanghai Committee of Science and Technology (Nos. 17JC1401200, 18JC1415600)the Shanghai Committee of Science and Technology 18JC1415600the Shanghai Committee of Science and Technology 17JC1401200the Strategic Priority Research Program XDB20000000the National Natural Science Foundation of China 21772222the National Natural Science Foundation of China 21772220the National Natural Science Foundation of China 21572245

Figures(3)

  • A nickel-catalyzed Negishi coupling of cyclobutanone oxime esters with aryl zinc reagents has been developed, in which nickel serves both as an initiator for imine radicals and a catalyst for the coupling of aryl zinc reagents with oxime esters. The protocol can avoid the use of poisonous cyanide and has broad substrate scope as well as good functional group compatibility. Therefore, this method provides an attractive strategy for the synthesis of valuable nitriles. Preliminary mechanistic studies indicate that a radical pathway is involved in the product formation.
  • 加载中
    1. [1]

      (a) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.
      (b) Li, C.; Zhu, C. Acta Chim. Sinica 2019, 77, 771 (in Chinese).
      (李超忠, 朱晨, 化学学报, 2019, 77, 771.)
      (c) Smith, J. M.; Harwood, S. J.; Baran, P. S. Acc. Chem. Res. 2018, 51, 1807.
      (d) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
      (e) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.

    2. [2]

      For selected reviews on merger of transition metal catalysis with alkyl radical, see:
      (a) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
      (b) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
      (c) Green, S. A.; Crossley, S. W. M.; Matos, J. L. M.; Shevick, S. L.; Shenvi, R. A. Acc. Chem. Res. 2018, 51, 2628.
      (d) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Chem. Rev. 2016, 116, 8912.
      (e) Liang, K.; Xia, C. Chin. J. Chem. 2017, 35, 255.
      (f) Jahn, U. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? A Fruitful Interplay Anyway. In Radicals in Synthesis III, Eds.: Heinrich, M.; Gansäuer, A., Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, p. 323.
      (g) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
      (h) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351.
      (i) Zhao, J.; Duan, X.; Guo, L.-N. Chin. J. Org. Chem. 2017, 37, 2498 (in Chinese).
      (赵景峰, 段新华, 郭丽娜, 有机化学, 2017, 37, 2498.)
      (j) Chen, D.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2571 (in Chinese).
      (陈董涵, 杨文, 姚永祺, 杨新, 邓颖颖, 杨定乔, 有机化学, 2018, 38, 2571.)

    3. [3]

      (a) Bour, J. R.; Ferguson, D. M.; McClain, E. J.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 8914.
      (b) Camasso, N. M.; Sanford, M. S. Science 2015, 347, 1218.
      (c) Tasker, S. Z.; Stanley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
      (d) Takahashi, T.; Kanna, K. Modern Organonickel Chemistry, Wiley-VCH, Weinheim, Germany, 2005, pp. 41.

    4. [4]

      (a) Wang, K.; Kong, W. Chin. J. Chem. 2018, 36, 247.
      (b) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
      (c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
      (d) Hu, X. Chem. Sci. 2011, 2, 1867.
      (e) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525.

    5. [5]

      For selected recent examples on Ni-catalyzed cross-coupling with alkyl halides, see:
      (a) Wang, X.; Ma, G.; Peng, Y.; Gong, H. J. Am. Chem. Soc. 2018, 140, 14490.
      (b) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
      (c) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624.
      (d) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694.
      (e) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
      (f) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726.
      (g) Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem., Int. Ed. 1995, 34, 2723.

    6. [6]

      For selected recent examples on Ni-catalyzed cross-coupling with sulfones, see:
      (a) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G.; Bao D-H.; Qiao, W.; Sun, L.; Collins, M. R.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. Science 2018, 360, 75.
      (b) Ariki, Z. T.; Maekawa, Y.; Zambo, M.; Crudden, C. M. J. Am. Chem. Soc. 2018, 140, 78.
      (c) Liu, M.; Zheng, Y.; Qiu, G.; Wu, J. Org. Chem. Front. 2018, 5, 2615.
      (d) Wu, J.-C.; Gong, L.-B.; Xia, Y.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. Angew. Chem., Int. Ed. 2012, 51, 9909.

    7. [7]

      For selected recent examples on Ni-catalyzed cross-coupling with redox active esters, see:
      (a) Ni, S.; Padial, N. M.; Kingston, C.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 6726.
      (b) Chen, T.; Zhang, H.; Mykhailiuk, P. K.; Baran, P. S. Angew. Chem., Int. Ed. 2019, 58, 2454.
      (c) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; We, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature, 2017, 545, 213.
      (d) Cornella, J.; Edwards, J. T.; Qin, T. Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
      (e) Qin T.; Cornella, J.; Li, C.; Baran, P. S. Science 2016, 352, 801.
      (f) Ye, Y.; Chen, H.; Sessler, J. H.; Gong, H. J. Am. Chem. Soc. 2019, 141, 820.
      (g) Huihui, K. M.; Caputo, J. A.; Melchor, Z.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
      (h) Wang, P.; Zhao, B.; Yuan, Y.; Shi, Z. Chem. Commun. 2019, 55, 1971.
      (i) Yang, L.; Zhang, J-Y.; Duan, X-H.; Gao, P.; Jiao, J.; Guo, L-N. J. Org. Chem. 2019, 84, 8615.

    8. [8]

      For selected reviews on cycloketone oximes, see:
      (a) Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044.
      (b) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
      (c) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem.- Eur. J. 2018, 24, 12154.
      (d) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.

    9. [9]

      Boivin, J.; Fouquet, E.; Zard, S. Z. J. Am. Chem. Soc. 1991, 113, 1055.  doi: 10.1021/ja00003a057

    10. [10]

      Boivin, J.; Schiano, A. M.; Zard, S. Z. Tetrahedron Lett. 1992, 33, 7849.  doi: 10.1016/S0040-4039(00)74760-5

    11. [11]

      For selected examples on Ni-catalyzed ring cleavage of cyclobutanone oximes, see:
      (a) Angelini, L.; Davies, J.; Simonetti, M.; Leonori, D. Angew. Chem., Int. Ed. 2019, 58, 5003.
      (b) Tang, Y.-Q.; Yang, J.-C.; Wang, L.; Guo, L.-N. Org. Lett. 2019, 21, 5178.
      (c) Gu, Y.-R.; Duan, X.-H.; Yang, L.; Guo, L.-N. Org. Lett. 2017, 19, 5908.
      (d) Ding, D.; Lan, Y.; Lin, Z.; Wang, C. Org. Lett. 2019, 21, 2723.

    12. [12]

      For selected examples on Cu-catalyzed ring cleavage of cyclobutanone oximes, see:
      (a) Liu, Z.-L.; Shen, H.-G.; Xiao, H.-W.; Li, C.-Z. Org. Lett. 2019, 21, 5201.
      (b) Wang, P.-P.; Zhao, B.-L.; Yuan, Y.; Shi, Z.-Z. Chem. Commun. 2019, 55, 1971.
      (c) Zhao, B.; Shi, Z.-Z. Angew, Chem., Int. Ed. 2017, 56, 12727.
      (d) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505.
      (e) Zhang, J. Y.; Duan, X. H.; Yang, J. H.; Guo, L. N. J. Org. Chem. 2018, 83, 4239.
      (f) Ai, W.-Y; Liu, Y.-Q; Wang, Q.; Liu, Q. Org. Lett. 2018, 20, 409.

    13. [13]

      For selected examples on other metal-catalyzed ring cleavage of cyclobutanone oximes, see:
      (a) Zhao, J.-F.; Guo, P.; Duan, X.-H.; Guo, L.-N. Adv. Synth. Catal. 2018, 360, 1775.
      (b) Nishimura, T.; Yoshinaka, T.; Nishiguchi, Y.; Uemura, S. Org. Lett. 2005, 7, 2425.
      (c) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 12049.

    14. [14]

      For selected examples on ring cleavage of cyclobutanone oximes via photocatalysis, see:
      (a) Lu, B.; Cheng, Y.; Chen, L.-Y.; Xiao, W.-J. ACS Catal. 2019, 9, 8159.
      (b) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
      (c) He, Y.; Anand, D.; Sun, Z.; Zhou, L. Org. Lett. 2019, 21, 3769.
      (d) Li, L.-M.; Chen, H.-G.; Mei, M.-J.; Zhou, L. Chem. Commun. 2017, 53, 11544.
      (e) Xia, P.-J.; Ye, Z.-P.; Hu, Y.-Z.; Yang, H. Org. Lett. 2019, 21, 2658.
      (f) Zhao, B.; Tan, H. Chen, C.; Jiao, N. Shi, Z.-Z. Chin. J. Chem. 2018, 36, 995.
      (g) Zhao, B.-L.; Chen, C.; Lv, J.-H.; Shi, Z.-Z. Org. Chem. Front. 2018, 5, 2719.
      (h) Shen, X.; Zhao, J.-J.; Yu, S.-Y. Org. Lett. 2018, 20, 5523.
      (i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 10707.
      (j) Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 13361.

    15. [15]

      (a) Zhang, J.-J.; Duan, X.-H.; Wu, Y.; Guo, L.-N. Chem. Sci. 2019, 10, 161.
      (b) Yin, Z.-P.; Rabeah, J.; Brückner, A.; Wu, X.-F. Org. Lett. 2019, 21, 1766.

    16. [16]

      (a) Shang, R.; Ji, D.-S.; Chu, L.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 4470.
      (b) Dalziel, M.-E.; Chen, P.-H.; Carrera, D. E.; Gosselin, F. Org. Lett. 2017, 19, 3446.
      (c) López, R.; Palomo, C. Angew. Chem., Int. Ed. 2015, 54, 13170.

    17. [17]

      Yang, H.-B.; Pathipati, S. R.; Selander, N. ACS Catal. 2017, 7, 8441.  doi: 10.1021/acscatal.7b03432

    18. [18]

      Ding, D.; Wang, C. ACS Catal. 2018, 8, 11324.  doi: 10.1021/acscatal.8b03930

    19. [19]

      (a) Chen, Y.-G.; Shuai, B.; Xu, X.-T.; Li, Y.-Q.; Yang, Q.-L.; Qiu, H.; Zhang, K. Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2019, 141, 3395.
      (b) Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
      (c) Ma, C.; Zhao, C.-Q.; Xu, X.-T.; Li, Z.-M.; Wang, X.-Y.; Zhang, K.; Mei, T.-S. Org. Lett. 2019, 21, 2464.
      (d) Chen, Y.-G.; Shuai, B.; Ma, C.; Zhang, X.-J.; Fang, P.; Mei, T.-S. Org. Lett. 2017, 19, 2969.

    20. [20]

      During preparing our manuscript, a nickel catalyzed Negishi coupling of oximes using 20% nickel catalyst was recently published: Angelini, L.; Sanz, L. M.; Leonori, D. Synlett 2019, DOI: 10.1055/s-0039-1690690

    21. [21]

      (a) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
      (b) Xu, H.-W.; Diccianni, J. B.; Katigbak, J.; Diao, T.-N. J. Am. Chem. Soc. 2016, 138, 4779.
      (c) Schley, N. D.; Fu. G. C. J. Am. Chem. Soc. 2014, 136, 16588.
      (d) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38, 1598.
      (e) Casares, J. A.; Espinet, P.; Fuentes, B.; Salas, G. J. Am. Chem. Soc. 2007, 129, 3508.

    22. [22]

      (f) Anderson, T. J.; Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc. 2004, 126, 8100.

    23. [23]

      (a) Yin, Z.; Rabeah, J.; Brückner, A.; Wu, X.-F. ACS Catal. 2018, 8, 10926.
      (b) Yu, X.-Y.; Chen, J.-R.; Wang, Z.-P.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
      (c) He, B.-Q.; Yu, X.-Y.; Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 12262.
      (d) Wang, P.-Z.; Yu, X.-Y.; Li, C.-Y.; He, B.-Q.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 9925.
      (e) Ai, W.; Liu, Y.; Wang, Q.; Lu, Z.; Liu, Q. Org. Lett. 2018, 20, 409.
      (f) Nakata, K.; Feng, C.; Tojo, T.; Kobayashi, Y. Tetrahedron Lett. 2014, 55, 5774.
      (g) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2011, 13, 1622.
      (h) Suga, T.; Shimazu, S.; Ukaji, Y. Org. Lett. 2018, 20, 5389.
      (i) Guiard, J.; Rahali, Y.; Praly, J.-P. Eur. J. Org. Chem. 2014, 21, 4461.
      (j) Ghosh, A. K.; Martyr, C. D.; Xu, C.-X. Org. Lett. 2012, 14, 2002.

  • 加载中
    1. [1]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    2. [2]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    3. [3]

      Hui YangGuangxun ZhangYueyao SunHuijie ZhouHuan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    7. [7]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    8. [8]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    9. [9]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    10. [10]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    11. [11]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    12. [12]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    13. [13]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    14. [14]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    15. [15]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    16. [16]

      Shaobin HeXiaoyun GuoQionghua ZhengHuanran ShenYuan XuFenglin LinJincheng ChenHaohua DengYiming ZengWei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096

    17. [17]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    18. [18]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    19. [19]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    20. [20]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

Metrics
  • PDF Downloads(18)
  • Abstract views(1601)
  • HTML views(349)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return