Citation: Xu Xiaoming, Guo Siqi, Zhang Jing, Chen Yantao, Kang Yaqing, Liu Na, Liu Junfang, Luo Cheng, Chen Shijie, Chen Hua. Structural Modifications of the Triazolo-thiadiazole Derivatives as DOT1L Inhibitors and Their Activities[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1345-1354. doi: 10.6023/cjoc201911012 shu

Structural Modifications of the Triazolo-thiadiazole Derivatives as DOT1L Inhibitors and Their Activities

  • Corresponding author: Chen Shijie, shijiechen@simm.ac.cn Chen Hua, hua-todd@163.com
  • Received Date: 7 November 2019
    Revised Date: 25 December 2019
    Available Online: 15 January 2020

    Fund Project: Project supported by the Natural Science Interdisciplinary Research Program of Hebei University (No. DXK201903)the Natural Science Interdisciplinary Research Program of Hebei University DXK201903

Figures(6)

  • A series of novel derivatives containing triazolo-thiadiazole moiety have been synthesized by structural modifications on a lead disruptor of telomeric silencing 1-like (DOT1L) inhibitor 8. All the compounds have been evaluated for their DOT1L inhibitory activities at the concentration of 50 μmol/L. The results showed that the tested compounds showed certain DOT1L inhibitory activities. Among them, N, N-dimethyl-4-(6-methyl-[1, 2, 4]triazolo[3, 4-b] [1, 3, 4]thiadiazol-3-yl)aniline (14b) and (R)-tert-butyl (1-((3-(4-(dimethylamino)phenyl)-[1, 2, 4]triazolo[3, 4-b] [1, 3, 4]thiadiazol-6-yl)methyl)-piperidin-3-yl)carba- mate (16a) were the best ones with IC50 values of 7.37 and 7.84 μmol/L, respectively, near that of the positive control 8. The structure-activity analysis showed that when the triazolo-thiadiazole moiety occupied the binding-site of S-adenosylmethionine (SAM) in DOT1L and R1 group was 4-N, N-dimethyl, the hydrophobic substituents as the tailed R2 groups would be accommodated into the DOT1L binding site, and the sizes of the substituents seemed no effects on their DOT1L inhibitory activities of the compounds.
  • 加载中
    1. [1]

      Min, J. R.; Feng, Q.; Li, Z. Z.; Zhang, Y.; Xu, R. M. Cell 2003, 112, 711.  doi: 10.1016/S0092-8674(03)00114-4

    2. [2]

      Kim, W.; Choi, M.; Kim, J. E. Cell Cycle 2014, 13, 726.  doi: 10.4161/cc.28104

    3. [3]

      Bernt, K. M.; Zhu, N.; Sinha, A. U.; Vempati, S.; Faber, J.; Krivtsov, A. V.; Feng, Z.; Punt, N.; Daigle, A.; Bullinger, L.; Pollock, R. M.; Richon, V. M.; Kung, A. L.; Armstrong, S. A. Cancer Cell 2011, 20, 66.  doi: 10.1016/j.ccr.2011.06.010

    4. [4]

      Lillico, R.; Lawrence, C. K. Lakowski, T. M. J. Proteome Res. 2018, 17, 2657.  doi: 10.1021/acs.jproteome.8b00118

    5. [5]

      Anglin, J. L.; Song, Y. J. Med. Chem. 2013, 56, 8972.  doi: 10.1021/jm4007752

    6. [6]

      Zhou, S. H.; Sun, P. J.; Zhao, Y. Q.; Zhang, Y.; Yu, N. F. Acta Pharm. Sin. 2018, 53, 500(in Chinese).
       

    7. [7]

      Ümit Kaniskan, H.; Martini, M. L.; Jin, J. Chem. Rev. 2018, 118, 989.  doi: 10.1021/acs.chemrev.6b00801

    8. [8]

      Basavapathruni, A.; Jin, L.; Daigle, S. R.; Majer, C. R.; Therkelsen, C. A.; Wigle, T. J.; Kuntz, K. W.; Chesworth, R.; Pollock, R. M.; Scott, M. P.; Moyer, M. P.; Richon, V. M.; Copeland, R. A.; Olhava, E. J. Chem. Biol. Drug Des. 2012, 80, 971.  doi: 10.1111/cbdd.12050

    9. [9]

      Daigle, S. R.; Olhava, E. J.; Therkelsen, C. A.; Majer, C. R.; Sneeringer, C. J.; Song, J.; Johnston, L. D.; Scott, M. P.; Smith, J. J.; Xiao, Y.; Jin, L.; Kuntz, K. W.; Chesworth, R.; Moyer, M. P.; Bernt, K. M.; Tseng, J. C.; Kung, A. L.; Copeland, R. A.; Richon, V. M.; Pollock, R. M. Cancer Cell 2011, 20, 53.  doi: 10.1016/j.ccr.2011.06.009

    10. [10]

      Stein, E. M.; Garcia-Manero, G.; Rizzieri, D. A.; Savona, M.; Tibes, R.; Altman, J. K.; Jongen-Lavrencic, M.; Dohner, H.; Armstrong, S.; Pollock, R. M.; Waters, N. J.; Legler, M.; Thomson, B.; Daigle, S.; McDonald, A.; Campbell, C.; Olhava, E.; Hedrick, E. E.; Lowenberg, B.; Copeland, R. A.; Tallman, M. S. Blood 2014, 124, 387.  doi: 10.1182/blood.V124.21.387.387

    11. [11]

      Yao, Y.; Chen, P.; Diao, J.; Cheng, G.; Deng, L.; Anglin, J. L.; Prasad, B. V.; Song, Y. J. Am. Chem. Soc. 2011, 133, 16746.  doi: 10.1021/ja206312b

    12. [12]

      Anglin, J. L.; Deng, L.; Yao, Y.; Cai, G.; Liu, Z.; Jiang, H.; Cheng, G.; Chen, P.; Dong, S.; Song, Y. J. Med. Chem. 2012, 55, 8066.  doi: 10.1021/jm300917h

    13. [13]

      Yu, W.; Chory, E. J.; Wernimont, A. K.; Tempel, W.; Scopton, A.; Federation, A.; Marineau, J. J.; Qi, J.; Barsyte-Lovejoy, D.; Yi, J.; Marcellus, R.; Iacob, R. E.; Engen, J. R.; Griffin, C.; Aman, A.; Wienholds, E.; Li, F.; Pineda, J.; Estiu, G.; Shatseva, T.; Hajian, T.; Al-Awar, R.; Dick, J. E.; Vedadi, M.; Brown, P. J.; Arrowsmith, C. H.; Bradner, J. E.; Schapira, M. Nat. Commun. 2012, 3, 1288.  doi: 10.1038/ncomms2304

    14. [14]

      Yu, W.; Smil, D.; Li, F.; Tempel, W.; Fedorov, O.; Nguyen, K. T.; Bolshan, Y.; Al-Awar, R.; Knapp, S.; Arrowsmith, C. H.; Vedadi, M.; Brown, P. J.; Schapira, M. Bioorg. Med. Chem. 2013, 21, 1787.  doi: 10.1016/j.bmc.2013.01.049

    15. [15]

      Spurr, S. S.; Bayle, E. D.; Yu, W. Y.; Li, F. L.; Tempel, W.; Vedadi, M.; Schapira, M.; Fish, P. V. Bioorg. Med. Chem. Lett. 2016, 26, 4518.  doi: 10.1016/j.bmcl.2016.07.041

    16. [16]

      Chen, J.; Park, H. J. ACS Chem. Biol. 2019, 14, 873.  doi: 10.1021/acschembio.8b00933

    17. [17]

      Scheufler, C.; Möbitz, H.; Gaul, C.; Ragot, C.; Be, C.; Fernández, C.; Beyer, K. M.; Tiedt, R.; Stauffer, F. ACS Med. Chem. Lett. 2016, 7, 730.  doi: 10.1021/acsmedchemlett.6b00168

    18. [18]

      Chao, C.; Zhu, H.; Stauffer, F.; Caravatti, G.; Vollmer, S.; Machauer, R.; Holzer, P.; Möbitz, H.; Scheufler, C.; Klumpp, M.; Tiedt, R.; Beyer, K. S.; Calkins, K.; Guthy, D.; Kiffe, M.; Zhang, J.; Gaul, C. ACS Med. Chem. Lett. 2016, 7, 735.  doi: 10.1021/acsmedchemlett.6b00167

    19. [19]

      Möbitz, H.; Machauer, R.; Holzer, P.; Vaupel, A.; Stauffer, F.; Ragot, C.; Caravatti, G.; Scheufler, C.; Fernández, C.; Hommel, U.; Tiedt, R.; Beyer, K. S.; Chao, C.; Zhu, H.; Gaul, C. ACS Med. Chem. Lett. 2017, 8, 338.  doi: 10.1021/acsmedchemlett.6b00519

    20. [20]

      Chen, S. J.; Wang, Y. L.; Zhou, W.; Li, S. S.; Peng, J. L.; Shi, Z.; Hu, J. C.; Liu, Y. C.; Ding, H.; Lin, Y. Y.; Li, L. J.; Cheng, S. F.; Liu, J. Q.; Lu, T.; Jiang, H. L.; Liu, B.; Zheng, M. Y.; Luo, C. J. Med. Chem. 2014, 57, 9028.  doi: 10.1021/jm501134e

    21. [21]

      Chen, S.; Li, L.; Chen, Y.; Hu, J.; Liu, J.; Liu, Y. C.; Liu, R.; Zhang, Y.; Meng, F.; Zhu, K.; Lu, J.; Zheng, M.; Chen, K.; Zhang, J.; Jiang, H.; Yao, Z.; Luo, C. J. Chem. Inf. Model. 2016, 56, 527.  doi: 10.1021/acs.jcim.5b00738

    22. [22]

      Wang, Y. L.; Li, L. J.; Zhang, B. D.; Xing, J.; Chen, S. J.; Wan, W.; Song, Y. K.; Jiang, H.; Jiang, H. L.; Luo, C.; Zheng, M. Y. J. Med. Chem. 2017, 60, 2026.  doi: 10.1021/acs.jmedchem.6b01785

    23. [23]

      Song, Y. K.; Li, L. J.; Chen, Y. T.; Liu, J. Q.; Xiao, S. H.; Lian, F. L.; Zhang, N. X.; Ding, H.; Zhang, Y. Y.; Chen, K. X.; Jiang, H. L.; Zhang, C. H.; Liu, Y. C.; Chen, S. J.; Luo, C. Bioorg. Med. Chem. 2018, 26, 1751.  doi: 10.1016/j.bmc.2018.02.020

    24. [24]

      Zhang, L.; Chen, Y. T.; Liu, N.; Li, L. J.; Xiao, S. H.; Li, X. L.; Chen, K. X.; Luo, C.; Chen, S. J.; Chen, H. Bioorg. Med. Chem. 2018, 80, 649.  doi: 10.1016/j.bioorg.2018.07.022

    25. [25]

      Cui, P. L.; Li, X. L.; Zhu, M. Y.; Wang, B. H.; Liu, J.; Chen, H. Eur. J. Med. Chem. 2017, 127, 159.  doi: 10.1016/j.ejmech.2016.12.053

    26. [26]

      Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.  doi: 10.1021/jm0306430

    27. [27]

      Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J. Med. Chem. 2006, 49, 6177.  doi: 10.1021/jm051256o

    28. [28]

      Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Thomas Pollard, W.; Banks, J. L. J. Med. Chem. 2004, 47, 1750.  doi: 10.1021/jm030644s

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    5. [5]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    6. [6]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    7. [7]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(14)
  • Abstract views(1572)
  • HTML views(229)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return