Citation: Yang Yunhan, Bao Qiulian, Luo Jianping, Yang Junli, Li Canhua, Wei Keke, Chuan Yongming, Yang Lijuan. Competitive Fluorescence Sensing for Paraquat Based on Methylene Blue/Water-Soluble Phosphate Salt Pillar[5]arene[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1680-1688. doi: 10.6023/cjoc201911008 shu

Competitive Fluorescence Sensing for Paraquat Based on Methylene Blue/Water-Soluble Phosphate Salt Pillar[5]arene

  • Corresponding author: Yang Lijuan, yangljyang@sina.com
  • Received Date: 6 November 2019
    Revised Date: 18 December 2019
    Available Online: 6 March 2020

    Fund Project: the National Natural Science Foundation of China 21562048Project supported by the National Natural Science Foundation of China (Nos. 21562048, 21762051), the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province and the Science Research Fund Project of Yunnan Provincial Department of Education (No. 2019Y0193)the Science Research Fund Project of Yunnan Provincial Department of Education 2019Y0193the National Natural Science Foundation of China 21762051

Figures(11)

  • Using water-soluble phosphate salt pillar[5]arene (PP5A) as the host and indicate dye methylene blue (MB) as the guest, the MB/PP5A host-guest inclusion complex was constructed. The fluorescence properties, complexation constants, complexation ratios and binding modes of PP5A and MB were studied. The inclusion complex was applied to competitive fluorescent sensing of paraquat (PQ). When MB is complexed with PP5A receptor, its fluorescence is quenched. When PQ is added to the MB/PP5A sensing system, PQ competes into the cavity of PP5A and MB is detached from the cavity of PP5A, which led to fluorescence recovery. This enables competitive fluorescence sensing of PQ. Therefore, the MB/PP5A fluorescence sensing system can detect PQ sensitively with a minimum detection limit of 3.6×10-7mol·L-1. The probe has the advantages of strong selectivity, simple and fast preparation, response in a wide pH range and good anti-interference performance, and can provide the basis for the sensing detection of PQ in organisms and environments.
  • 加载中
    1. [1]

      Desipio, M. M.; Thorpe, R.; Saha, D. Optik 2018, 172, 1047.  doi: 10.1016/j.ijleo.2018.07.124

    2. [2]

      Siangproh, W.; Somboonsuk, T.; Chailapakul, O.; Songsrirote, K. Talanta 2017, 174, 448.  doi: 10.1016/j.talanta.2017.06.045

    3. [3]

      Hu, X.; Liang, Y.-Y.; Zhao, H.-Y.; Zhao, M. Int. Immunopharmacol. 2019, 67, 231.  doi: 10.1016/j.intimp.2018.12.029

    4. [4]

      Gao, C.; Huang, Q.-X.; Lan, Q.-P.; Feng, Y.; Tang, F.; Hoi, M. P. M.; Zhang; , J.-X.; Lee S. M. Y.; Wang, R.-B. Nat. Commun. 2018, 9, 2967.  doi: 10.1038/s41467-018-05437-5

    5. [5]

      Yu, G.-C.; Zhou, X.-Y.; Zhang, Z.-B.; Han, C.-Y.; Mao, Z.-W.; Gao, C.-Y.; Huang, F.-H. J. Am. Chem. Soc. 2012, 134, 19489.  doi: 10.1021/ja3099905

    6. [6]

      Wang, K.; Guo, D.-S.; Zhang, H.-Q.; Li, D.; Zheng, X-L.; Liu, Y. J. Med. Chem. 2009, 52, 6402.  doi: 10.1021/jm900811z

    7. [7]

      Zhao, Z.-Z.; Zhang, F.-W.; Zhang, Z.-P. Spectrochim. Acta A 2018, 199, 96.  doi: 10.1016/j.saa.2018.03.042

    8. [8]

      Tcheumi, H. L.; Tassontio, V. N.; Tonle, I. K.; Ngameni, E. Appl. Clay Sci. 2019, 173, 97.  doi: 10.1016/j.clay.2019.03.013

    9. [9]

      Rai, M. K.; Das, J. V.; Gupta, V. K. Talanta 1997, 45, 343.  doi: 10.1016/S0039-9140(97)00136-7

    10. [10]

      Lu, T.; Birke, R. L.; Lombardi, J. R. Langmuir 1986, 2, 305.  doi: 10.1021/la00069a009

    11. [11]

      Kambhampati, I.; Roinestad, K. S.; Hartman, T. G.; Rosen, J. D.; Fukuda, E. K.; Lippincott, R. L.; Rosen, R. T. J. Chromatogr. A 1994, 688, 67.  doi: 10.1016/0021-9673(94)00889-2

    12. [12]

      Gao, L.; Liu, J.-T.; Wang, C.-Y.; Liu, G.-J.; Niu, X.-D.; Shu, C.-X.; Zhu, J. J. Chromatogr. B 2014, 944, 136.  doi: 10.1016/j.jchromb.2013.10.028

    13. [13]

      Tomková, H.; Sokolová, R.; Opletal, T.; Kučerová, P.; Kučera, L.; Součková, J.; Skopalová, J.; Barták, P. J. Electroanal. Chem. 2018, 821, 33.  doi: 10.1016/j.jelechem.2017.12.048

    14. [14]

      Vinner, E.; Stievenart, M.; Humbert, L.; Mathieu, D. Biomed. Chromatogr. 2001, 15, 342.  doi: 10.1002/bmc.81

    15. [15]

      Usui, K.; Minami, E.; Fujita, Y.; Kobayashi, H.; Hanazaw, T.; Kamijo, Y.; Funayama, M. J. Pharmacol. Toxicol. Methods 2019, 100, 106610.  doi: 10.1016/j.vascn.2019.106610

    16. [16]

      Yang, Y.-H.; Yang, J.-L.; Du, Y.; Li C.-H.; Wei K.-K.; Lu, J.-J.; Chen, W.; Yang, L.-J. ACS Omega 2019, 4, 17741.  doi: 10.1021/acsomega.9b02180

    17. [17]

      Du, T.; Yuan, W.; Zhao, Z. Y.; Liu, S. M. Chem. Commun. 2019, 55, 3658.  doi: 10.1039/C9CC00406H

    18. [18]

      Xie, Z.-P.; Lei, J.-L.; Yang, M.-F.; Li, Y.-J.; Geng, X.-H.; Liu, S.-M.; Wang, J.-H. Biosens. Bioelectron. 2019, 127, 200.  doi: 10.1016/j.bios.2018.12.020

    19. [19]

      Chen, Y.; Huang, F.-H.; Li, Z.-T.; Liu, Y. Sci. China Chem. 2018, 61, 979.  doi: 10.1007/s11426-018-9337-4

    20. [20]

      Huo, B.-C.; Li, B.; Su, H.; Zeng, X. Q.; Xu, K.-D.; Cui, L. Chin. J. Org. Chem. 2019, 39, 1990(in Chinese).
       

    21. [21]

      Sun, C.-L.; Teng, K.-X.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Q.-Z. Acta Chim. Sinica 2018, 76, 779.  doi: 10.6023/A18070258

    22. [22]

      Li, P.-Y.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2019, 30, 1190.  doi: 10.1016/j.cclet.2019.03.035

    23. [23]

      Wang, M.-J.; Du, X.-S.; Tian, H.-S.; Jia, Q.; Deng, R.; Cui, Y.-H.; Wang, C. Y; Kamel, M. Chin. Chem. Lett. 2019, 30, 345.  doi: 10.1016/j.cclet.2018.10.014

    24. [24]

      Li, Z.-T.; Yang, J.; Huang, F.-H. Chin. J. Chem. 2018, 36, 59.  doi: 10.1002/cjoc.201700601

    25. [25]

      Jie, K.-C.; Zhou, Y.-J.; Li, E.-R.; Huang, F.-H. Acc. Chem. Res. 2018, 51, 2064.  doi: 10.1021/acs.accounts.8b00255

    26. [26]

      Shao, W.; Liu, X.; Wang, T.-T.; Hu, X.-Y. Chin. J. Org. Chem. 2018, 38, 1107(in Chinese).
       

    27. [27]

      Pian, M. D.; Schalley, C. A.; Fabris, F.; Scarso, A. Org. Chem. Front. 2019, 6, 1044.  doi: 10.1039/C9QO00176J

    28. [28]

      Cao, D.-R.; Herbert, M. Chin. Chem. Lett. 2019, 30, 1758.  doi: 10.1016/j.cclet.2019.06.026

    29. [29]

      Zhang, Z.-B.; Sun, K.-C.; Li, S.-J.; Yu, G.-C. Chin. Chem. Lett. 2019, 30, 957.  doi: 10.1016/j.cclet.2019.01.018

    30. [30]

      Tan, X.-P.; Wu, Y.; Yu, S.; Zhang, T.-Y.; Tian, H.-X.; He, S.-H.; Zhao, A.-N.; Chen, Y.-W.; Gou, Q. Talanta 2019, 195, 472.  doi: 10.1016/j.talanta.2018.11.099

    31. [31]

      Qian, X. C.; Zhou, X. J.; Gao, W.; Li, J.; Ran, X.; Du, G. B.; Yang, L. Microchem. J. 2019, 150, 104203.  doi: 10.1016/j.microc.2019.104203

    32. [32]

      Li, H. Chen, D.-X.; Sun, Y.-L.; Zheng, Y.-B.; Tan, L.-L.; Weiss, P.-S.; Yang, Y.-W. J. Am. Chem. Soc. 2013, 135, 1570.

    33. [33]

      Wang, X.; Liu, Z. J.; Hill, E. H.; Zheng, Y. B.; Guo, G. Q.; Wang, Y.; Weiss, P. S.; Yu, J. H.; Yang, Y. W. Matter 2019, 1, 848.  doi: 10.1016/j.matt.2019.03.005

    34. [34]

      Sun, S.-G.; Li, F.-S.; Liu, F.-Y.; Wang, J.-T.; Peng, X.-J. Sci. Rep. 2014, 4, 3570.

    35. [35]

      Mao, X.-W.; Liu, T.; Bi, J.-H.; Luo, L.; Tian, D.-M.; Li, H.-B. Chem. Commun. 2016, 52, 4385.  doi: 10.1039/C6CC00949B

    36. [36]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.  doi: 10.1021/ja711260m

    37. [37]

      Shi, H.-X.; Cheng, X.-B.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Chin. J. Org. Chem. 2018, 38, 1718(in Chinese).
       

    38. [38]

      Li, Z.-Y.; Hou, N.-N.; Shao, W.; Xiao, S.-J.; Lin, C.; Wang, L.-Y. Chin. J. Org. Chem. 2018, 38, 2002(in Chinese).
       

    39. [39]

      Wang, X.; Wu, J.-R.; Liang, F.; Yang, Y.-W. Org. Lett. 2019, 21, 5215.  doi: 10.1021/acs.orglett.9b01827

    40. [40]

      Ma, X.-Q.; Wang, Y.; Wei, T.-B.; Qi, L.-H.; Jiang, X.-M.; Ding, J.-D.; Zhu, W.-B.; Yao, H.; Zhang, Y.-M.; Lin, Q. Dyes Pigm. 2019, 164, 279.  doi: 10.1016/j.dyepig.2019.01.049

    41. [41]

      Chen, J.-F.; Liu, X.; Han, B.-B.; Ding, J.-D.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2018, 38, 2741(in Chinese).
       

    42. [42]

      Venkatesan, M.; Sathiyanarayanan, K. I. Sens. Actuators B 2018, 267, 373.  doi: 10.1016/j.snb.2018.03.077

    43. [43]

      Huang, X.; Wu, S.-S.; Ke, X.-K.; Li, X.-Y.; Du, X.-Z. ACS Appl. Mater. Interfaces 2017, 9, 19638.  doi: 10.1021/acsami.7b04015

    44. [44]

      Cui, S.-Y.; Du, J.-L.; Wang, T.; Hu, X.-L. Spectrochim. Acta A 2012, 96, 188.  doi: 10.1016/j.saa.2012.05.025

    45. [45]

      Zhou, Y.-Y.; Yu, H.-P.; Zhang, L.; Xu, H.-W.; Wu, L.; Sun, J.-Y.; Wang, L. Microchim. Acta 2009, 164, 63.  doi: 10.1007/s00604-008-0032-3

    46. [46]

      Montes-Navajas P., Corma, A.; Garcia, H. Chem. Phys. Chem. 2008, 9, 713.  doi: 10.1002/cphc.200700735

    47. [47]

      Lu, Q.; Gu, J.-H.; Yu, H.-P.; Liu, C.; Wang, L.; Zhou, Y.-Y. Spectrochim. Acta A 2007, 68, 15.  doi: 10.1016/j.saa.2006.10.044

    48. [48]

      Zhao, G.-C.; Zhu, J.-J.; Chen, H.-Y. Spectrochim. Acta A 1999, 55, 1109.  doi: 10.1016/S1386-1425(99)00002-5

    49. [49]

      Yang, K.; Wen, J.; Chao, S.; Liu, J.; Yang, K.; Pei, Y.-X.; Pei, Z.-C. Chem. Commun. 2018, 54, 5911.  doi: 10.1039/C8CC02739K

    50. [50]

      Wang, L.; Fan, Y.-Q.; Guan, X.-W.; Qu, W.-J.; Lin, Q.; Yao, H.; Wei, T.-B.; Zhang, Y.-M. Tetrahedron 2018, 74, 4005.  doi: 10.1016/j.tet.2018.06.006

    51. [51]

      Siangproh, W.; Somboonsuk, T.; Chailapakul, O.; Songsrirote, K. Talanta 2017, 174, 448.  doi: 10.1016/j.talanta.2017.06.045

    52. [52]

      Chuntib, P.; Themsirimongkon, S.; Saipanya, S.; Jakmunee, J. Talanta 2017, 170, 1.  doi: 10.1016/j.talanta.2017.03.073

    53. [53]

      Zhao, Z.-Z.; Zhang, F.-W.; Zhang, Z.-P. Spectrochim. Acta A 2018, 199, 96.  doi: 10.1016/j.saa.2018.03.042

    54. [54]

      Chuntib, P.; Jakmunee, J. Talanta 2015, 144, 432.  doi: 10.1016/j.talanta.2015.06.066

    55. [55]

      Tu, J.; Xiao, L.-L.; Jiang, Y.-F.; He, Q.-Y.; Sun, S.-G.; Xu, Y.-Q. Sens. Actuators B 2015, 215, 382.  doi: 10.1016/j.snb.2015.04.015

    56. [56]

      Chen, C.-R.; Men, G.-G.; Bu, W.-H.; Liang, C.-S.; Sun, H.-C.; Jiang, S.-M. Sens. Actuators B 2015, 220, 463.  doi: 10.1016/j.snb.2015.06.004

    57. [57]

      Hu, S. M.S. Thesis, Hebei University of Science and Technology, Shijiazhuang, 2011 (in Chinese).

    58. [58]

      Grandis, V. D.; Bizzarri, A. R.; Cannistraro, S. J. Mol. Recognit. 2007, 20, 215.  doi: 10.1002/jmr.840

    59. [59]

      Hu, X.-Y.; Liu, X.; Zhang, W.-Y.; Qin, S.-Yao, C. H.; Li, Y.; Cao, D.-R.; Peng, L.-M.; Wang, L.-Y. Chem. Mater. 2016, 28, 3778.  doi: 10.1021/acs.chemmater.6b00691

    60. [60]

      Yao, Y. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2015 (in Chinese).

    61. [61]

      Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785.  doi: 10.1002/jcc.21256

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    6. [6]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Yan Yuan Haitao Wu Yi Zhang Li Jiang Feng Cao Yanmao Dong . Research on the Talent Training System to Enhance the Core Competence of Employment for Undergraduate Students Majoring in Materials Chemistry. University Chemistry, 2024, 39(11): 52-56. doi: 10.12461/PKU.DXHX202402015

    9. [9]

      Jinghui Zhang Wei Shen Sheng Tang Ru Jia Wei Zhong . Exploration and Reflection on Interdisciplinary Teaching of Analytical Chemistry in the New Era of International Competition. University Chemistry, 2025, 40(7): 1-9. doi: 10.12461/PKU.DXHX202408019

    10. [10]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    11. [11]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(13)
  • Abstract views(1892)
  • HTML views(454)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return