Citation: Xie Tao, He Haibing, Gao Shuanhu. Synthetic Progress of Polycyclic Xanthone[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 551-562. doi: 10.6023/cjoc201911007 shu

Synthetic Progress of Polycyclic Xanthone

  • Corresponding author: He Haibing, hbhe@chem.ecnu.edu.cn Gao Shuanhu, shgao@chem.ecnu.edu.cn
  • Received Date: 6 November 2019
    Revised Date: 26 November 2019
    Available Online: 11 December 2019

    Fund Project: Program of Shanghai Academic/Technology Research Leader 18XD1401500Program of Shanghai Science and Technology Committee 18JC1411303Project supported by the National Natural Science Foundation of China (Nos.21971068, 21772044), the Program of Shanghai Academic/Technology Research Leader (No.18XD1401500), the Program of Shanghai Science and Technology Committee (No.18JC1411303), the National Young Top-Notch Talent Support Program and the Fundamental Research Funds for the Central UniversitiesProject supported by the National Natural Science Foundation of China 21971068Project supported by the National Natural Science Foundation of China 21772044

Figures(13)

  • Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated angular hexacyclic frameworks. In the last decade, there has been a noticeable increase in reports on both synthetic and pharmacological investigations of this class of natural molecules due to their unique chemical structures and biological activities. Most members of this class of molecules show strong activities towards Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, potent antifungal activity and antitumour activity. The synthetic studies of some members of this class of natural products is summarized.
  • 加载中
    1. [1]

      Masters, K. S.; Brase, S. Chem. Rev. 2012, 112, 3717.  doi: 10.1021/cr100446h

    2. [2]

      (a) Cheng, G.; Sun, J.; Fridlender, Z. G.; Ching, L. C. S.; Wang, L. M.; Albelda, S. M. J. Biol. Chem. 2010, 285, 10553.
      (b) Gobbi, S.; Zimmer, C.; Belluti, F.; Hartmann, R. W.; Rampa, A.; Recanatini, M.; Bisi, A. J. Med. Chem. 2010, 53, 5347.
      (c) Palmeira, A.; Paiva, A.; Sousa, E.; Seca, H.; Almeida, G. M.; Lima, R. T.; Fernandezs, M. X.; Pinto, M.; Vasconcelos, M. H. Chem. Biol. Drug Des. 2010, 76, 43.

    3. [3]

      Honda, N. K.; Pavan, F. R.; Coelho, R. G.; Micheletti, A. C.; de Andrade Leite, S. R.; Lopes, T. I. B.; Beatriz, A.; Mitsutsu, M. Y.; Brum, R. L.; Leite, C. Q. F. Phytomedicine 2010, 17, 328.  doi: 10.1016/j.phymed.2009.07.018

    4. [4]

      Pinto, M. M.M.; Sousa, M. E.; Nascimento, M. S. Curr. Med. Chem. 2005, 12, 2517.  doi: 10.2174/092986705774370691

    5. [5]

      Lesch, B.; Bräse, S. Angew. Chem., Int. Ed. 2004, 43, 115.  doi: 10.1002/anie.200352154

    6. [6]

      Winter, D. K.; Sloman, D. L.; Porco, J. Nat. Prod. Rep. 2013, 30, 382.  doi: 10.1039/c3np20122h

    7. [7]

      Peoples, A. J.; Zhang, Q.; Millet, W. P.; Rothfeder, M. T.; Pescatore, B. C.; Madden, A. A.; Ling, L.; Moore, C. M. J. Antibiot. 2008, 61, 457.  doi: 10.1038/ja.2008.62

    8. [8]

      (a) Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Org. Lett. 2006, 8, 5267.
      (b) Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Chem.-Eur. J. 2007, 13, 1610.

    9. [9]

      (a) Lee, T. M.; Carter, G. T.; Borders, D. B. J. Chem. Soc., Chem. Commun. 1989, 22, 1771.
      (b) Korshalla, J.; Maiese, W. M.; Goodman, J.; Torrey, M. J.; Kantor, S.; Labeda, D. P.; Greenstein, M. J. Antibiot. 1990, 43, 1059.

    10. [10]

      Kunimoto, S.; Lu, J.; Esumi, H.; Yamazaki, Y.; Kinoshita, N.; Honma, Y.; Hamada, M.; Ohsono, M.; Ishizuka, M.; Takeuchi, T. J. Antibiot. 2003, 56, 1004.  doi: 10.7164/antibiotics.56.1004

    11. [11]

      Kunimoto, S.; Someno, T.; Yamazaki, Y.; Lu, J.; Esumi, H.; Naganawa, H. J. Antibiot. 2003, 56, 1012.  doi: 10.7164/antibiotics.56.1012

    12. [12]

      Terui, Y.; Chu, Y.; Li, J.-Y.; Ando, T.; Yamamoto, H.; Kawamura, Y.; Tomishima, Y.; Uchida, S.; Okazaki, T.; Munetomo, E.; Seki, T.; Yamamoto, K.; Murakami, S.; Kawashima, A. Tetrahedron Lett. 2003, 44, 5427.  doi: 10.1016/S0040-4039(03)01318-2

    13. [13]

      Qiao, Y.-F.; Okazaki, T.; Ando, T.; Mizoue, K.; Kondo, K.; Eguchi, T.; Kakinuma, K. J. Antibiot. 1998, 51, 282.  doi: 10.7164/antibiotics.51.282

    14. [14]

      Kondo, K.; Eguchi, T.; Kakinuma, K.; Mizoue, K.; Qiao, Y.-F. J. Antibiot. 1998, 51, 288.  doi: 10.7164/antibiotics.51.288

    15. [15]

      Malet-Cascon, L.; Romero, F.; Espliego-Vazquez, F.; Gravalos, D.; Fernandez-Puentes, J. L. J. Antibiot. 2003, 56, 219.  doi: 10.7164/antibiotics.56.219

    16. [16]

      Rodriguez, J. C.; Puentes, J. L. F.; Baz, J. P.; Canedo, L. M. J. Antibiot. 2003, 56, 318.  doi: 10.7164/antibiotics.56.318

    17. [17]

      Omura, S.; Iwai, Y.; Hinotozawa, K.; Takahashi, Y.; Kato, J.; Nakagawa, A.; Hirano, A.; Shimizu, H.; Haneda, K. J. Antibiot. 1982, 35, 645.  doi: 10.7164/antibiotics.35.645

    18. [18]

      Omura, S.; Nakagawa, A.; Kushida, K.; Lukacs, G. J. Am. Chem. Soc. 1986, 108, 6088.  doi: 10.1021/ja00279a095

    19. [19]

      Maiese, W. M.; Lechevalier, M. P.; Lechevalier, H. A.; Korshalla, J.; Goodman, J.; Wildey, M. J.; Kuck, N.; Greenstein, M. J. Antibiot. 1989, 42, 846.  doi: 10.7164/antibiotics.42.846

    20. [20]

      Carter, G. T.; Nietsche, J. A.; Williams, D. R.; Borders, D. B. J. Antibiot. 1990, 43, 504.  doi: 10.7164/antibiotics.43.504

    21. [21]

      Kelly, T. R.; Jagoe, C. T.; Li, Q. J. Am. Chem. Soc. 1989, 111, 4522.  doi: 10.1021/ja00194a071

    22. [22]

      (a) Rao, A. V. R.; Yadav, J. S.; Reddy, K. K.; V., U. Tetrahedron Lett. 1991, 32, 5199.
      (b) Mehta, G.; Shah, S. R.; Venkateswarlu, Y. Tetrahedron 1994, 50, 11729.

    23. [23]

      Masuo, R.; Ohmori, K.; Hintermann, L.; Yoshida, S.; Suzuki, K. Angew. Chem., Int. Ed. 2009, 48, 3462.  doi: 10.1002/anie.200806338

    24. [24]

      Sloman, D. L.; Bacon, J. W.; Porco, J. A. J. Am. Chem. Soc. 2011, 133, 9952.  doi: 10.1021/ja203642n

    25. [25]

      Butler, J. R.; Wang, C.; Bian, J.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 9956.  doi: 10.1021/ja204040k

    26. [26]

      Wang, Y.; Wang, C.; Butler, J. R.; Ready, J. M. Angew. Chem., Int. Ed. 2013, 52, 10796.  doi: 10.1002/anie.201304812

    27. [27]

      Dai, Y.; Ma, F.; Shen, Y.; Xie, T.; Gao, S. Org. Lett. 2018, 20, 2872.  doi: 10.1021/acs.orglett.8b00901

    28. [28]

      (a) Bringmann, G.; Breuning, M.; Tasler, S. Synthesis 1999, 525.
      (b) Bringmann, G.; Mortimer, J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.

    29. [29]

      Tamiya, M.; Ohmori, K.; Kitamura, M.; Kato, H.; Arai, T.; Oorui, M.; Suzuki, K. Chem.-Eur. J. 2007, 13, 9791.  doi: 10.1002/chem.200700863

    30. [30]

      (a) Karlsson, J. O.; Nguyen, N. V.; Foland, L. D.; Moore, H. W. J. Am. Chem. Soc. 1985, 107, 3392.
      (b) Foland, L. D.; Karlsson, J. O.; Perri, S. T.; Schwabe, R.; Xu, S.; Patil, S.; Moore, H. W. J. Am. Chem. Soc. 1989, 111, 975.

    31. [31]

      Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Org. Lett. 2006, 8, 5267.  doi: 10.1021/ol062113e

    32. [32]

      Winter, D. K.; Endoma-Arias, M. A.; Hudlicky, T.; Beutler, J. A.; Porco, J. A. J. Org. Chem. 2013, 78, 7617.  doi: 10.1021/jo401169z

    33. [33]

      Sloman, D. L.; Mitasev, B.; Scully, S. S.; Beutler, J. A.; Porco, J. A. Angew. Chem., Int. Ed. 2011, 50, 2511.  doi: 10.1002/anie.201007613

    34. [34]

    35. [35]

      Endoma, M. A. A.; Bai, V. P.; Hansen, J.; Hudlicky, T. Org. Process Res. Dev. 2002, 6, 525.  doi: 10.1021/op020013s

    36. [36]

      (a) Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56, 3769.
      (b) Talele, H. R.; Gohil, J.; Bedekar, A. V. Bull. Chem. Soc. Jpn. 2009, 82, 1182.

    37. [37]

      Yang, J.; Knueppel, D.; Cheng, B.; Mans, D.; Martin, S. F. Org. Lett. 2015, 17, 114.  doi: 10.1021/ol503336t

    38. [38]

      Shi, Y. Acc. Chem. Res. 2004, 37, 488.  doi: 10.1021/ar030063x

    39. [39]

      Nicolaou, K. C.; Li, A. Angew. Chem., Int. Ed. 2008, 47, 6579.  doi: 10.1002/anie.200802632

    40. [40]

      (a) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500.
      (b) Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.; Noji, M.; Koga, K. J. Org. Chem. 1999, 64, 2264.

    41. [41]

      Castillo-Contreras, E. B.; Dake, G. R. Org. Lett. 2014, 16, 1642.  doi: 10.1021/ol5002945

    42. [42]

      (a) Sakai, N.; Annaka, K.; Konakahara, T. J. Org. Chem. 2006, 71, 3653.
      (b) Bianchi, G.; Chiarini, M.; Marinelli, F.; Rossi, L.; Arcadi, A. Adv. Synth. Catal. 2010, 352, 136.

    43. [43]

      Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.  doi: 10.1021/ar9502341

    44. [44]

      Ma, A. J.; Ready, J. M. Org. Lett. 2019, 21, 1148.  doi: 10.1021/acs.orglett.9b00098

    45. [45]

      Hosokawa, S.; Fumiyama, H.; Fukuda, H.; Fukuda, T.; Seki, M.; Tatsuta, K. Tetrahedron Lett. 2007, 48, 7305.  doi: 10.1016/j.tetlet.2007.08.037

    46. [46]

      Barros, M. T.; Maycock, C. D.; Ventura, M. R. Chem.-Eur. J. 2000, 6, 3991.  doi: 10.1002/1521-3765(20001103)6:21<3991::AID-CHEM3991>3.3.CO;2-M

    47. [47]

      Marion, N.; Ramon, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448.  doi: 10.1021/ja809403e

    48. [48]

      Noji, M.; Nakajima, M.; Koga, K. Tetrahedron Lett. 1994, 35, 7983.  doi: 10.1016/S0040-4039(00)78402-4

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Hui Wang Yiwen Zhang Dong Liu . “三全育人”理念下培养应用型创新人才——以“赛教结合”模式为例的探索与实践. University Chemistry, 2025, 40(6): 37-42. doi: 10.12461/PKU.DXHX202407091

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    14. [14]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(62)
  • Abstract views(2401)
  • HTML views(769)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return