Citation: Liu Hui, Zhang Xiaofeng, Cheng Jingzhao, Ye Dongnai, Chen Long, Wen Herui, Liu Shiyong. Direct C—H Arylation-Derived π-Conjugated Functional Materials for Device Applications[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 831-855. doi: 10.6023/cjoc201910042 shu

Direct C—H Arylation-Derived π-Conjugated Functional Materials for Device Applications

  • Corresponding author: Liu Shiyong, chelsy@zju.edu.cn
  • Received Date: 31 October 2019
    Revised Date: 29 November 2019
    Available Online: 27 December 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21374075)the National Natural Science Foundation of China 21374075

Figures(5)

  • Organic π-conjugated polymers and small molecules, featured by low cost, light weight, solution processibility as well as finely adjustable structure and properties, have become kinds of fundamental semiconductor materials for next generation of optoelectric devices. The C—B/C—X Suzuki and C—Sn/C—X Stille couplings have become the most widely used strategy for the construction of sp2-C—C bonds involved in organic semiconductor materials. However, these traditional C—C coupling reactions usually involve prefunctionalization of subtrates and multipe synthetic steps, along with toxic by-products. In recent years, the direct C—H arylation reaction (C—H/C—X coupling) for the construction of sp2-C—C bonds and the synthesis of organic π-conjugated materials, featured by the simplicity without use of organometallic precursors, high atom- and step-econogy and low cost, has attracted extensive attention from researchers, due to its great potential for pratical applictions. The C—H/C—X direct arylation coupling has great potential in the efficient synthesis and practical application of organic optoelectric materials. Herein, an overview of recent developments in direct C—H arylation for the synthesis of organic conjugated functional materials used in device applications is provided, including organic photovoltaics (OPV), organic field effect transistor (OFET), dye-sensitized solar cell (DSSC), perovskite cells (PSC), organic light emitting diode (OLED) and lithium rattery, etc. The advantages, challenges as well as the future developments in the area of direct C—H arylation are also discussed and commented.
  • 加载中
    1. [1]

      Chiang, C. K.; Fincher, C. R. J.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Macdiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098.  doi: 10.1103/PhysRevLett.39.1098

    2. [2]

      Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H. J. Am. Chem. Soc. 1978, 100, 1013.  doi: 10.1021/ja00471a081

    3. [3]

      Yu, S.; Peng, A.; Zhang, S.; Huang, H. Sci. China Chem. 2018, 61, 1359.  doi: 10.1007/s11426-018-9315-2

    4. [4]

      Di, B.-H.; Chen, Y.-L. Chin. Chem. Lett. 2018, 29, 245.  doi: 10.1016/j.cclet.2017.08.043

    5. [5]

      Chen, X.; He, Y.; Ali, M. U.; He, Y.; Zhu, Y.; Li, A.; Zhao, C.; Perepichka, I. F.; Meng, H. Sci. China Chem. 2019, 62, 1360.  doi: 10.1007/s11426-019-9555-4

    6. [6]

      Yang, L.; Yin, C.-Z.; Ali, M. A.; Dong, C.-Y.; Xie, X.-M.; Wu, X.-P.; Wang, Y.-X.; Yu, Y.; Xie, L.-H.; Bian, L.-Y.; Bao, J.-M.; Ran, X.-Q.; Huang, W. Chin. J. Chem. 2019, 37, 915.  doi: 10.1002/cjoc.201900229

    7. [7]

    8. [8]

      He, P.; Zhang, H.; Xu, C.; Zhen, Y.; Dong, H.; Hu, W. Chin. Chem. Lett. 2019, 30, 903.  doi: 10.1016/j.cclet.2019.02.012

    9. [9]

      Song, X.; Zhao, J.; Zhang, W.; Chen, L. Chin. Chem. Lett. 2018, 29, 331.  doi: 10.1016/j.cclet.2017.09.015

    10. [10]

      Ostroverkhova, O. Chem. Rev. 2016, 116, 13279.  doi: 10.1021/acs.chemrev.6b00127

    11. [11]

      Gather, M. C.; Kohnen, A.; Meerholz, K. Adv. Mater. 2011, 23, 233.  doi: 10.1002/adma.201002636

    12. [12]

      Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.  doi: 10.1002/adma.201003128

    13. [13]

      Xu, R.-P.; Li, Y.-Q.; Tang, J.-X. J. Mater. Chem. C 2016, 4, 9116.  doi: 10.1039/C6TC03230C

    14. [14]

      Facchetti, A. Chem. Mater. 2011, 23, 733.  doi: 10.1021/cm102419z

    15. [15]

      Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. J. Am. Chem. Soc. 2013, 135, 6724.  doi: 10.1021/ja400881n

    16. [16]

      Sirringhaus, H. Adv. Mater. 2014, 26, 1319.  doi: 10.1002/adma.201304346

    17. [17]

      Kan, J.; Wang, S.; Wang, Z.; Guo, S.; Wang, W.; Li, L. Chin. Chem. Lett. 2018, 29, 1681.  doi: 10.1016/j.cclet.2018.07.015

    18. [18]

    19. [19]

      Li, J.; Hu, Y.-H.; Ge, C.-W.; Gong, H.-G.; Gao, X.-K. Chin. Chem. Lett. 2018, 29, 423.  doi: 10.1016/j.cclet.2017.06.008

    20. [20]

      Fu, L.-N.; Leng, B.; Li, Y.-S.; Gao, X.-K. Chin. Chem. Lett. 2018, 29, 175.  doi: 10.1016/j.cclet.2017.05.014

    21. [21]

      Bian, L.; Zhu, E.; Tang, J.; Tang, W.; Zhang, F. Prog. Polym. Sci. 2012, 37, 1292.  doi: 10.1016/j.progpolymsci.2012.03.001

    22. [22]

      Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. Acc. Chem. Res. 2016, 49, 2424.  doi: 10.1021/acs.accounts.6b00347

    23. [23]

      Jin, Y.; Chen, Z.; Dong, S.; Zheng, N.; Ying, L.; Jiang, X. F.; Liu, F.; Huang, F.; Cao, Y. Adv. Mater. 2016, 28, 9811.  doi: 10.1002/adma.201603178

    24. [24]

      Zhang, Y.; Yao, H.; Zhang, S.; Qin, Y.; Zhang, J.; Yang, L.; Li, W.; Wei, Z.; Gao, F.; Hou, J. Sci. China Chem. 2018, 61, 1328.  doi: 10.1007/s11426-018-9260-2

    25. [25]

      Lin, J.-D.; Zhong, L.; Wu, F.-P.; Li, Y.; Yuan, Y.; Bin, H.; Zhang, Z.; Liu, F.; Fan, J.; Zhang, Z.-G.; Liao, L.-S.; Jiang, Z.-Q.; Li, Y. Sci. China Chem. 2018, 61, 1405.  doi: 10.1007/s11426-018-9275-6

    26. [26]

      Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M.; Li, Y. Sci. China Chem. 2018, 61, 531.  doi: 10.1007/s11426-017-9199-1

    27. [27]

      Su'ait, M. S.; Rahman, M. Y. A.; Ahmad, A. Sol. Energy 2015, 115, 452.  doi: 10.1016/j.solener.2015.02.043

    28. [28]

      Yuna, S.; Freitas, J. N.; Nogueirac, A. F; Wang, Y.; Ahmade, S.; Wang, Z.-S. Prog. Polym. Sci. 2016, 59, 1.  doi: 10.1016/j.progpolymsci.2015.10.004

    29. [29]

      Chang, Y.-C.; Lee, K.-M.; Lai, C.-H.; Liu, C.-Y. Chem. Asian J. 2018, 13, 1510.  doi: 10.1002/asia.201800454

    30. [30]

      Magliulo, M.; Manoli, K.; Macchia, E.; Palazzo, G.; Torsi, L. Adv. Mater. 2015, 27, 7528.  doi: 10.1002/adma.201403477

    31. [31]

      Zhang, C.; Chen, P.; Hu, W. Chem. Soc. Rev. 2015, 44, 2087.  doi: 10.1039/C4CS00326H

    32. [32]

      Zhou, X.; Cheng, X.; Zhu, Y.; Elzatahryc, A. A.; Alghamdie, A.; Denga, Y.; Zhao, D. Chin. Chem. Lett. 2018, 29, 405.  doi: 10.1016/j.cclet.2017.06.021

    33. [33]

      (a) Hu, Z.; Ying, L.; Huang, F.; Cao, Y. Sci. China Chem. 2017, 60, 571.
      (b) Berny, S.; Blouin, N.; Distler, A.; Egelhaaf, H.-J.; Krompiec, M.; Lohr, A.; Lozman, O. R.; Morse, G. E.; Nanson, L.; Pron, A.; Tierney, S.; Tiwana, P.; Wagner, M.; Wilson, H. Adv. Sci. 2016, 3, 1500342.
      (c) Cheng, P.; Zhan, X. Chem. Soc. Rev. 2016, 45, 2544.

    34. [34]

      (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172.
      (b) Bergman, R. G. Nature 2007, 446, 391.

    35. [35]

      Tang, R.-Y.; Li, G.; Yu, J.-Q. Nature 2014, 507, 215.  doi: 10.1038/nature12963

    36. [36]

      Davies, H. M. L.; Morton, D. J. Org. Chem. 2016, 81, 343.  doi: 10.1021/acs.joc.5b02818

    37. [37]

    38. [38]

      Pierpont, C. G.; Mazza, M. C. Inorg. Chem. 1974, 13, 8.

    39. [39]

      Herrmann, W. A.; Brossmer, C.; Reisinger, C.-P.; Riermeier, T. H.; Ofele, K.; Beller, M. Chem. Eur. J. 1997, 3, 8.

    40. [40]

      (a) Corwin, A. H.; Naylor, M. A. J. Am. Chem. Soc. 1947, 69, 1004.
      (b) Klapproth, W. L.; Westheimer, F. H. J. Am. Chem. Soc. 1950, 72, 4461.

    41. [41]

      (a) Lapointe, D.; Fagnou K. Chem. Lett. 2010, 39, 1118.
      (b) Ackermann, L. Chem. Rev. 2011, 111, 1315.

    42. [42]

      Rudenko, A. E.; Thompson, B. C. Polym. Chem. 2015, 53, 135.  doi: 10.1002/pola.27279

    43. [43]

      Suraru, S.-L.; Lee, J. A.; Luscombe, C. K. ACS Macro Lett. 2016, 5, 724.  doi: 10.1021/acsmacrolett.6b00279

    44. [44]

      Gobalasingham, N. S.; Thompson, B. C. Prog. Polym. Sci. 2018, 83, 135.  doi: 10.1016/j.progpolymsci.2018.06.002

    45. [45]

      Kuwabara, J.; Kanbara, T. J. Synth. Org. Chem. 2014, 72, 1271.  doi: 10.5059/yukigoseikyokaishi.72.1271

    46. [46]

      Kowalski, S.; Allard, S.; Zilberberg, K.; Riedl, T.; Scherf, U. Prog. Polym. Sci. 2013, 38, 1805.  doi: 10.1016/j.progpolymsci.2013.04.006

    47. [47]

      Mercier, L. G.; Leclerc, M. Acc. Chem. Res. 2013, 46, 1597.  doi: 10.1021/ar3003305

    48. [48]

      Wang, K.; Wang, M. F. Curr. Org. Chem. 2013, 17, 1001.

    49. [49]

      Bura, T.; Blaskovits, J. T.; Leclerc, M. J. Am. Chem. Soc. 2016, 138, 10056.  doi: 10.1021/jacs.6b06237

    50. [50]

      Yu, S.; Liu, F. C.; Yu, J. W.; Zhang, S. M.; Cabanetos, C.; Gao, Y. Q.; Huang, W. J. Mater. Chem. C 2017, 5, 29.  doi: 10.1039/C6TC04240F

    51. [51]

      Wu, W. T.; Xin, H. S.; Ge, C. W.; Gao, X. K. Tetrahedron Lett. 2017, 58, 175.  doi: 10.1016/j.tetlet.2016.11.126

    52. [52]

      Bohra, H.; Wang, M. F. J. Mater. Chem. A 2017, 5, 11550.  doi: 10.1039/C7TA00617A

    53. [53]

      Okamoto, K.; Zhang, J. X.; Housekeeper, J. B.; Marder, S. R.; Luscombe, C. K. Macromolecules 2013, 46, 8059.  doi: 10.1021/ma401190r

    54. [54]

      Zhang, Q.; Chang, M. J.; Lu, Y.; Sun, Y. N.; Li, C. X.; Yang, X. L.; Zhang, M. T.; Chen, Y. S. Macromolecules 2018, 51, 379.  doi: 10.1021/acs.macromol.7b02390

    55. [55]

      Kuwabara, J. P. Polym. J. 2018, 50, 1099.  doi: 10.1038/s41428-018-0101-3

    56. [56]

    57. [57]

      Sevignon, M.; Papillon, J.; Schulz, E.; Lemaire, M. Tetrahedron Lett. 1999, 40, 5873.  doi: 10.1016/S0040-4039(99)01164-8

    58. [58]

      Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa F. J. Am. Chem. Soc. 2010, 132, 11420.  doi: 10.1021/ja105767z

    59. [59]

      Ni, Z.; Wang, H.; Dong, H.; Dang, Y.; Zhao, Q.; Zhang, X.; Hu, W. Nat. Chem. 2019, 271.

    60. [60]

      Wen, Z.; Ma, X.; Yang, X.; Bi, P.; Niu, M.; Zhang, K.; Feng, L.; Hao, X. Chin. Chem. Lett. 2019, 30, 995.  doi: 10.1016/j.cclet.2019.01.028

    61. [61]

      Jo, J.; Pron, A.; Berrouard, P.; Leong, W. L.; Yuen, J. D.; Moon, J. S.; Leclerc, M.; Heeger, A. J. Adv. Energy Mater. 2012, 2, 1397.  doi: 10.1002/aenm.201200350

    62. [62]

      Mercier, L. G.; Aich, B. R.; Najari, A.; Beaupre, S.; Berrouard, P.; Pron, A.; Robitaille, A.; Taob, Y.; Leclerc, M. Polym. Chem. 2013, 4, 5252.  doi: 10.1039/c3py21138j

    63. [63]

      Wang, D. H.; Pron, A.; Leclerc, M.; Heeger, A. J. Adv. Funct. Mater. 2013, 23, 1297.  doi: 10.1002/adfm.201202541

    64. [64]

      Kuwabara, J.; Fujie, Y.; Maruyama, K.; Yasuda, T.; Kanbara, T. Macromolecules 2016, 49, 9388.  doi: 10.1021/acs.macromol.6b02380

    65. [65]

      Dudnik, A. S.; Aldrich, T. J.; Eastham, N. D.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2016, 138, 15699.  doi: 10.1021/jacs.6b10023

    66. [66]

      Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C.; Gao, X. Angew. Chem., Int. Ed. 2017, 57, 1322.

    67. [67]

      Welsh, T. A.; Laventure, A.; Welch, G. C. Molecules 2018, 23, 931.  doi: 10.3390/molecules23040931

    68. [68]

      Wienk, M. M.; Turbiez, M.; Gilot, J.; Janssen, R. A. Adv. Mater. 2008, 20, 2556.  doi: 10.1002/adma.200800456

    69. [69]

      Tamayo, A. B.; Tantiwiwat, M.; Walker, B.; Nguyen, T.-Q. J. Phys. Chem. C 2008, 112, 15543.  doi: 10.1021/jp804816c

    70. [70]

      Zhang, J.; Kang, D. Y.; Barlow, S.; Marder, S. R. J. Mater. Chem. 2012, 22, 21392.  doi: 10.1039/c2jm35398a

    71. [71]

      Liu, S. Y.; Shi, M. M.; Huang, J. C.; Jin, J. N.; Hu, X. L.; Pan, J. Y.; Li, H. Y.; Jen, A. K. Y.; Chen, H. Z. J. Mater. Chem. A 2013, 1, 2795.  doi: 10.1039/c2ta01318e

    72. [72]

      Liu, S.-Y.; Fu, W.-F.; Xu, J.-Q.; Fan, C.-C.; Jiang, H.; Shi, M.; Li, H.-Y.; Chen, J.-W.; Cao, Y.; Chen, H.-Z. Nanotechnology 2014, 25, 014006.  doi: 10.1088/0957-4484/25/1/014006

    73. [73]

      Liu, S.-Y.; Liu, W.-Q.; Xu, J.-Q.; Fan, C.-C.; Fu, W.-F.; Ling, J.; Wu, J.-Y.; Shi, M.-M.; Jen, A. K.-Y.; Chen, H.-Z. ACS Appl. Mater. Interfaces 2014, 6, 6765.  doi: 10.1021/am500522x

    74. [74]

      Liu, S.-Y.; Jung, J. W.; Li, C.-Z.; Huang, J.; Zhang, J.; Chen, H. Z.; Jen, A. K.-Y. J. Mater. Chem. A 2015, 3, 22162.  doi: 10.1039/C5TA06639E

    75. [75]

      Liu, S.-Y.; Liu, W.-Q.; Yuan, C.-X.; Zhong, A.-G.; Han, D.; Wang, B.; Shah, M. N.; Shi, M.-M.; Chen, H. Z. Dyes Pigm. 2016, 134, 139.  doi: 10.1016/j.dyepig.2016.07.007

    76. [76]

      Liu, S.-Y.; Wu, C.-H.; Li, C.-Z.; Liu, S.-Q.; Wei, K.-H.; Chen, H.-Z.; Jen, A. K.-Y. Adv. Sci. 2015, 1500014.

    77. [77]

      Sun, M.; Wang, W.; Lv, W.; Lu, M.; Yan, S.; Liang, L.; Ling, Q. D. Synth. Met. 2015, 209, 412.  doi: 10.1016/j.synthmet.2015.08.019

    78. [78]

      Lu, M.; Wang, W.; Lv, W.; Yan, S.; Zhang, T.; Zhen, H.; Ling, Q. D. RSC Adv. 2016, 6, 86276.  doi: 10.1039/C6RA18464B

    79. [79]

      Homyak, P.; Liu, Y.; Liu, F.; Russel, T. P.; Coughlin, E. B. Macromolecules 2015, 48, 6978.  doi: 10.1021/acs.macromol.5b01275

    80. [80]

      Maglione, C.; Carella, A.; Centore, R.; Chavez, P.; Leveque, P.; Fall, S.; Leclerc, N. Dyes Pigm.2017, 141, 169.  doi: 10.1016/j.dyepig.2017.02.012

    81. [81]

      Bura, T.; Beaupré, S.; Ibraikulov, O.A.; Legaré, M.-A.; Quinn, J.; Levéque, P.; Heiser, T.; Li, Y.; Leclerc, N.; Leclerc, M. Macromolecules 2017, 50, 7080.  doi: 10.1021/acs.macromol.7b01198

    82. [82]

      Payne, A.-J.; Li, S.; Dayneko, S. V.; Risko, C.; Welch, G. C. Chem. Commun. 2017, 53, 10168.  doi: 10.1039/C7CC05836E

    83. [83]

      McAfee, S. M.; Dayneko, S. V.; Hendsbee, A. D.; Josse, P.; Blanchard, P.; Cabanetos, C.; Welch, G. C. J. Mater. Chem. A 2017, 5, 11623.  doi: 10.1039/C7TA00318H

    84. [84]

      Aldrich, T. J.; Dudnik, A. S.; Eastham, N. D.; Manley, E. F.; Chen, L. X.; Chang, R. P. H.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. Macromolecules 2018, 51, 9140.  doi: 10.1021/acs.macromol.8b02297

    85. [85]

      Kuwabara, J.; Yasuda, T.; Choi, S. J.; Lu, W.; Yamazaki, K.; Kagaya, S.; Han, L.; Kanbara, T. Adv. Funct. Mater. 2014, 24, 3226.  doi: 10.1002/adfm.201302851

    86. [86]

      Kuwabara, J.; Takase, N.; Yasuda, T.; Kanbara, T. Polym. Chem. 2016, 54, 2337.  doi: 10.1002/pola.28105

    87. [87]

      Elsawy, W.; Kang, H.; Yu, K.; Elbarbary, A.; Lee, K.; Lee, J.-S. Polym. Chem.2014, 52, 2926.  doi: 10.1002/pola.27328

    88. [88]

      Shaker, M.; Trinh, C. K.; Kim, W.; Kim, H.; Lee, K.; Lee, J.-S. New J. Chem. 2015, 39, 4957.  doi: 10.1039/C5NJ00287G

    89. [89]

      Grenier, F.; Aïch, B. R.; Lai, Y.-Y.; Guérette, M.; Holmes, A. B.; Tao, Y.; Wong, W. W. H.; Leclerc, M. Chem. Mater. 2015, 27, 2137.  doi: 10.1021/acs.chemmater.5b00083

    90. [90]

      Chang, S.-W.; Waters, H.; Kettle, J.; Kuo, Z.-R.; Li, C.-H.; Yu, C.-Y.; Horie, M. Macromol. Rapid Commun. 2012, 33, 1927.  doi: 10.1002/marc.201200368

    91. [91]

      Chang, S.-W.; Waters, H.; Kettle, J.; Horie, M. Org. Electron. 2012, 13, 2967.  doi: 10.1016/j.orgel.2012.08.023

    92. [92]

      Sharma, B.; Singh, A.; Afroz, M. A.; Iyer, P. K.; Jacob, J. Synth. Met. 2017, 226, 56.  doi: 10.1016/j.synthmet.2017.02.002

    93. [93]

      Gobalasingham, N. S.; Ekiz, S.; Pankow, R. M.; Livi, F.; Bundgaard, E.; Thompson, B. C. Polym. Chem. 2017, 8, 4393.  doi: 10.1039/C7PY00859G

    94. [94]

      Wang, K.; Chen, H.; Wei, X.; Bohra, H.; He, F.; Wang, M. Dyes Pigm. 2018, 158, 183.  doi: 10.1016/j.dyepig.2018.05.036

    95. [95]

      Marzano, G.; Kotowski, D.; Babudri, F.; Musio, R.; Pellegrino, A.; Luzzati, S.; Po, R.; Farinola, G. M. Macromolecules 2015, 48, 7039.  doi: 10.1021/acs.macromol.5b01676

    96. [96]

      Chen, S.; Lee, K. C.; Zhang, Z.-G.; Kim, D. S.; Li, Y.; Yang, C. Macromolecules 2016, 49, 527.  doi: 10.1021/acs.macromol.5b02324

    97. [97]

      Kudrjasova, J.; Kesters, J.; Verstappen, P.; Brebels, J.; Vangerven, T.; Cardinaletti, I.; Drijkoningen, J.; Penxten, H.; Manca, J.; Lutsen, L.; Vanderzande, D.; Maes, W. J. Mater. Chem. A 2016, 4, 791.  doi: 10.1039/C5TA09023G

    98. [98]

      Garcias-Morales, C.; Romero-Borja, D.; Maldonado, J.-L.; Roa, A. E.; Rodríguez, M.; García-Merinos, J. P.; Ariza-Castolo, A. Molecules 2017, 22, 1607.  doi: 10.3390/molecules22101607

    99. [99]

      Nakanishi, T.; Shirai, Y.; Han, L. J. Mater. Chem. A 2015, 3, 4229.  doi: 10.1039/C4TA05101G

    100. [100]

      Livi, F.; Gobalasingham, N. S.; Thompson, B. C.; Bundgaard, E. Polym. Chem. 2016, 54, 2907.  doi: 10.1002/pola.28176

    101. [101]

      Josse, P.; Chavez, P.; Dindault, C.; Dalinot, C.; McAfee, S. M.; Dabos-Seignon. S.; Tondelier. D.; Welch. G.; Blanchard. P.; Leclerc, N.; Cabanetos, C. Dyes Pigm. 2017, 137, 576.  doi: 10.1016/j.dyepig.2016.10.046

    102. [102]

      Hendsbee, A. D.; Dayneko, S. V.; Pells, J. A.; Cann, J. R.; Welch, G. C. Sustainable Energy Fuels 2017, 1, 1137.  doi: 10.1039/C7SE00056A

    103. [103]

      Welsh, T. A.; Laventure, A.; Baumgartner, T.; Welch, G. C. J. Mater. Chem. C 2018, 6, 2148.

    104. [104]

      Dudnik, A. S.; Aldrich, T. J.; Eastham, N. D.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2016, 138, 15699.  doi: 10.1021/jacs.6b10023

    105. [105]

      Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. J. Am. Chem. Soc. 2013, 135, 14896.  doi: 10.1021/ja405112s

    106. [106]

      Sonar, P.; Foonga, T. R. B.; Dodabalapur, A. Phys. Chem. Chem. Phys. 2014, 16, 4275.  doi: 10.1039/c3cp53641f

    107. [107]

      Hendsbee, A. D.; Sun, J.-P.; Rutledge, L. R.; Hill, I. G.; Welch, G. C. J. Mater. Chem. A 2014, 2, 4198.  doi: 10.1039/C3TA14414C

    108. [108]

      Pouliot, J.-R.; Sun, B.; Leduc, M.; Najari, A.; Lib, Y.; Leclerc, M. Polym. Chem. 2015, 6, 278.  doi: 10.1039/C4PY01222D

    109. [109]

      Shao, J.; Wang, G.; Wang, K.; Yang, C.; Wang, M. Polym. Chem. 2015, 6, 6836.  doi: 10.1039/C5PY00595G

    110. [110]

      Wang, K.; Wang, G.; Wang, M. Macromol. Rapid Commun. 2015, 36, 2162.  doi: 10.1002/marc.201500377

    111. [111]

      Broll, S.; Nübling, F.; Luzio, A.; Lentzas, D.; Komber, H.; Caironi, M.; Sommer, M. Macromolecules 2015, 48, 7481.  doi: 10.1021/acs.macromol.5b01843

    112. [112]

      Lei, T.; Dou, J.-H.; Ma, Z.-J.; Yao, C.-H.; Liu, C.-J.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2012, 134, 20025.  doi: 10.1021/ja310283f

    113. [113]

      Poduval, M. K.; Burrezo, P. M.; Casado, J.; Navarrete, J. T. L.; Ortiz, R. P.; Kim, T.-H. Macromolecules 2013, 46, 9220.  doi: 10.1021/ma4018907

    114. [114]

      Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M. J. Am. Chem. Soc. 2015, 137, 6705.  doi: 10.1021/jacs.5b03355

    115. [115]

      Gao, Y.; Zhang, X.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2015, 27, 6753.  doi: 10.1002/adma.201502896

    116. [116]

      Gao, Y.; Deng, Y.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2017, 29, 1606217.  doi: 10.1002/adma.201606217

    117. [117]

      Song, H.; Deng, Y.; Gao, Y.; Jiang, Y.; Tian, H.; Yan, D.; Geng, Y.; Wang, F. Macromolecules 2017, 50, 2344.  doi: 10.1021/acs.macromol.6b02781

    118. [118]

      Gao, Y.; Bai, J.; Sui, Y.; Han, Y.; Deng, Y.; Tian, H.; Geng, Y.; Wang, F. Macromolecules 2018, 51, 8752.  doi: 10.1021/acs.macromol.8b01112

    119. [119]

      Chen, F.; Jiang, Y.; Sui, Y.; Zhang, J.; Tian, H.; Han, Y.; Deng, Y.; Hu, W.; Geng, Y. Macromolecules 2018, 51, 8652.  doi: 10.1021/acs.macromol.8b01885

    120. [120]

      Guo, C.; Quinn, J.; Sun, B.; Li, Y. Polym. Chem. 2016, 7, 4515.  doi: 10.1039/C6PY00762G

    121. [121]

      Nohara, Y.; Kuwabara, J.; Yasuda, T.; Han, L.; Kanbara, T. Polym. Chem. 2014, 52, 1401.  doi: 10.1002/pola.27140

    122. [122]

      Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T. Angew. Chem., Int. Ed. 2019, 58, 2.  doi: 10.1002/anie.201813331

    123. [123]

      Huang, J.; Wang, K.; Gupta, S.; Wang, G.; Yang, C.; Mushrif, S. H.; Wang, M. Polym. Chem. 2016, 54, 2015.  doi: 10.1002/pola.28068

    124. [124]

      Efrem, A.; Wang, K.; Wang, M. Dyes Pigm. 2017, 145, 331.  doi: 10.1016/j.dyepig.2017.05.040

    125. [125]

      Zhang, J. X.; Parker, T. C.; Chen, W.; Williams, L.; Khrustalev, V. N.; Jucov, E. V.; Barlow, S.; Timofeeva, T. V.; Marder, S. R. J. Org. Chem. 2016, 81, 360.  doi: 10.1021/acs.joc.5b02551

    126. [126]

      Shi, Q.; Tatum, W.; Zhang, J.; Scott, C.; Luscombe, C. K.; Marder, S. R.; Blakey, S. B. Asian J. Org. Chem. 2018, 58, 10698.

    127. [127]

    128. [128]

      Lu, W.; Kuwabara, J.; Iijima, T.; Higashimura, H.; Hayashi, H.; Kanbara, T. Macromolecules 2012, 45, 4128.  doi: 10.1021/ma3004899

    129. [129]

      Aoki, H.; Saito, H.; Shimoyama, Y.; Kuwabara, J.; Yasuda, T.; Kanbara, T. ACS Macro Lett. 2018, 7, 90.  doi: 10.1021/acsmacrolett.7b00887

    130. [130]

      Sun, M.-L.; Zhu, W.-S.; Zhang, Z.-S.; Ou, C.-J.; Xie, L.-H.; Yang, Y.; Qian, Y.; Zhao, Y.; Huang, W. J. Mater. Chem. C 2015, 3, 94.  doi: 10.1039/C4TC01963F

    131. [131]

      Beydoun, K.; Zaarour, M.; Williams, J. A. G.; Doucet, H.; Guerchais, V. Chem. Commun. 2012, 48, 1260.  doi: 10.1039/C2CC16327F

    132. [132]

      Faradhiyani, A.; Zhang, Q.; Maruyama, K.; Kuwabara, J.; Yasuda, T.; Kanbara, T. Mater. Chem. Front. 2018, 2, 1306.  doi: 10.1039/C7QM00584A

    133. [133]

      Li, J.; Liu, X.; Cui, P.; Li, J.; Ye, T.; Wang, X.; Zhang, C.; Zhao, Y. Sci. China Chem. 2019, 62, 1257.  doi: 10.1007/s11426-019-9487-0

    134. [134]

      O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.  doi: 10.1038/353737a0

    135. [135]

      Lin, P.-H.; Lu, T.-J.; Cai, D.-J.; Lee, K.-M.; Liu, C.-Y. ChemSusChem 2015, 8, 3222.  doi: 10.1002/cssc.201500993

    136. [136]

      Lin, P.-H.; Liu, K.-T.; Liu, C.-Y. Chem.-Eur. J. 2015, 21, 1.  doi: 10.1002/chem.201490218

    137. [137]

      Lu, K.-M.; Li, W.-M.; Lin, P.-Y.; Liu, K.-T.; Liu, C.-Y. Adv. Synth. Catal. 2017, 392, 177.

    138. [138]

      Matsumura, K.; Yoshizaki, S.; Maitani, M. M.; Wada, Y.; Ogomi, Y.; Hayase, S.; Kaiho, T.; Fuse, S.; Tanaka, H.; Takahashi, T. Chem.-Eur. J. 2015, 21, 9742.  doi: 10.1002/chem.201500979

    139. [139]

      Zheng, L.; Cao, Q.; Wang, J.; Chai, Z.; Cai, G.; Ma, Z.; Han, H.; Li, Q.; Li, Z.; Chen, H. ACS Omega 2017, 2, 7048.  doi: 10.1021/acsomega.7b01387

    140. [140]

      Ciou, Y.-S.; Lin, P.-H.; Li, W.-M.; Lee, K.-M.; Liu, C.-Y. J. Org. Chem. 2017, 82, 3538.  doi: 10.1021/acs.joc.7b00054

    141. [141]

      Huang, J.-H.; Lin, P.-H.; Li, W.-M.; Lee, K.-M.; Liu, C.-Y.; ChemSusChem 2017, 10, 2284.  doi: 10.1002/cssc.201700421

    142. [142]

      Chang, Y.-C.; Lee, K.-M.; Lai, C.-H.; Liu, C.-Y. Chem. Asian J. 2018, 13, 1510.  doi: 10.1002/asia.201800454

    143. [143]

      Tian, L.; Hu, Z.; Liu, X.; Liu, Z.; Guo, P.; Xu, B.; Xue, Q.; Yip, H.-L.; Huang, F.; Cao, Y. ACS Appl. Mater. Interfaces 2019, 11, 5289.  doi: 10.1021/acsami.8b19036

    144. [144]

      Robitaille, A.; Perea, A.; Belanger, D.; Leclerc, M. J. Mater. Chem. A 2017, 5, 18088.  doi: 10.1039/C7TA03786D

    145. [145]

      Wang, K.-L.; Kuo, T.-H.; Yao, C.-F.; Chang, S.-W.; Yang, Y.-S.; Huang, H.-K.; Tsai, C. J.; Horie, M. Chem. Commun. 2017, 53, 1856.  doi: 10.1039/C6CC08177K

    146. [146]

      Yao, C.-F.; Wang, K.-L.; Huang, H.-K.; Lin, Y.-J.; Lee, Y.-Y.; Yu, C.-W.; Tsai, C.-J.; Horie, M. Macromolecules 2017, 50, 6924.  doi: 10.1021/acs.macromol.7b01355

    147. [147]

      Elsawy, W.; Son, M.; Jang, J.; Kim, M. J.; Ji, Y.; Kim, T.-W.; Ko, H. C.; Elbarbary, A.; Ham, M.-H.; Lee, J.-S. ACS Macro Lett. 2015, 4, 322.  doi: 10.1021/mz500698p

    148. [148]

      Liu, B.; Bao, Y.; Ling, H.; Zhu, W.; Gong, R.; Lin, J.; Xie, L.; Yi, M.; Huang, W. Chin. J. Polym. Sci. 2016, 10, 1183.
       

    149. [149]

      Huang, W.-Y.; Shen, Z.-Q.; Cheng, J. Z.; Liu, L.-L.; Yang, K.; Chen, X. R.; Wen, H.-R.; Liu, S.-Y. J. Mater. Chem. A 2019, 7, 24222.  doi: 10.1039/C9TA06444C

    150. [150]

      Lin, Y.; Zhan, X. Acc. Chem. Res. 2016, 49, 175.  doi: 10.1021/acs.accounts.5b00363

    151. [151]

      Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. J. Am. Chem. Soc. 2015, 137, 3886.  doi: 10.1021/jacs.5b00305

    152. [152]

      Zhou, C.; Liang, Y.; Liu, F.; Sun, C.; Huang, X.; Xie, Z.; Huang, F.; Roncali, J.; Russell, T. P.; Cao, Y. Adv. Funct. Mater. 2014, 24, 7538.  doi: 10.1002/adfm.201401945

    153. [153]

      Wang, J.-L.; Liu, K.-K.; Yan, J.; Wu, Z.; Liu, F.; Xiao, F.; Chang, Z.-F.; Wu, H.-B.; Cao, Y.; Russell, T. P. J. Am. Chem. Soc. 2016, 138, 7687.  doi: 10.1021/jacs.6b03495

    154. [154]

      Liu, S.-Y.; Liu, H.; Shen, Z.-Q.; Huang, W.-Y.; Zhong, A.-G.; Wen, H.-R. Dyes Pigm. 2019, 162, 640.  doi: 10.1016/j.dyepig.2018.10.075

    155. [155]

      Liu, S.-Y.; Cheng, J.-Z.; Zhang, X.-F.; Liu, H.; Shen, Z.-Q.; Wen, H.-R. Polym. Chem. 2019, 10, 325.  doi: 10.1039/C8PY01478G

    156. [156]

      Liu, H.; Zhang, X.-F.; Cheng, J.-Z.; Zhong, A.-G.; Wen, H.-R.; Liu, S.-Y. Molecules 2019, 24, 1760.  doi: 10.3390/molecules24091760

    157. [157]

      Liu, S.-Y.; Wang, D.-G.; Zhong, A.-G.; Wen, H.-R. Org. Chem. Front. 2018, 5, 653.  doi: 10.1039/C7QO00960G

    158. [158]

    159. [159]

      Zhang, X.-F.; Cheng, J.-Z.; Liu, H.; Shan, Q.; Jia, G.; Wen, H.-R.; Liu, S.-Y. Dyes Pigm. 2020, 172, 107819.  doi: 10.1016/j.dyepig.2019.107819

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    3. [3]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    20. [20]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

Metrics
  • PDF Downloads(20)
  • Abstract views(2769)
  • HTML views(577)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return