Citation: Yan Lijun, Yan Yuxin, Chen Xuebing, Wang Yongchao. Advances in Multicomponent Asymmetric Cascade Synthesis Involving Hydrogen-Bond-Activated Nitroolefins[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 856-872. doi: 10.6023/cjoc201910039 shu

Advances in Multicomponent Asymmetric Cascade Synthesis Involving Hydrogen-Bond-Activated Nitroolefins

  • Corresponding author: Chen Xuebing, orangekaka@126.com Wang Yongchao, yongchaowang126@126.com
  • Received Date: 31 October 2019
    Revised Date: 2 December 2019
    Available Online: 19 December 2019

    Fund Project: the Applied Basic Research Project Foundation of Yunnan Provincial Department of Science and Technology 2017FD156Project supported by the Applied Basic Research Project Foundation of Yunnan Provincial Department of Science and Technology (Nos. 2018FD016, 2017FD073, 2017FD156)the Applied Basic Research Project Foundation of Yunnan Provincial Department of Science and Technology 2018FD016the Applied Basic Research Project Foundation of Yunnan Provincial Department of Science and Technology 2017FD073

Figures(16)

  • Organocatalytic multicomponent asymmetric cascade reaction is generally regarded as one of the most effective methods for constructing complex chiral compounds. Bifunctional chiral catalysts are an important class of single-molecule double-activated organic catalysts, which can simultaneously activate hydrogen bonds of multiple reactive substrates to achieve the formation of multiple new bonds and stereoselective control of multiple chiral centers. Nitroolefins are important organic reaction synthons, which can participate in a variety of asymmetric cascade reactions by hydrogen bond activation. In this paper, the recent advances in nitroolefins-involved multicomponent asymmetric cascade reactions catalyzed by bifunctional organocatalysts involving chiral bifunctional thiourea amines, squaramide amines and other bifunctional catalysts are reviewed. Specifically, the catalytic systems, characteristics, mechanisms are systematically expounded, and the application of this research field is also prospected.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417.  doi: 10.1021/ja00392a029

    4. [4]

      Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.  doi: 10.1021/ja036972z

    5. [5]

      For some typical references in this area, see: (a) Zhan, G.; Du, W.; Chen, Y. C. Chem. Soc. Rev. 2017, 46, 1675.
      (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
      (c) Liu, J. Y.; Zhao, J.; Zhang, J. L.; Xu, P. F. Org. Lett. 2017, 19, 1846.
      (d) Shirakawa, S.; Koga, K.; Tokuda, T.; Yamamoto, K.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 6220.
      (e) Chen, P.; Bao, X.; Zhang, L. F.; Ding, M.; Han, X. J.; Li, J.; Zhang, B. B.; Tu, Y. Q.; Fan, C. A. Angew. Chem., Int. Ed. 2011, 50, 8161.
      (f) Miyamura, H.; Choo, G. C.; Yasukawa, T.; Yoo, W. J.; Kobayashi, S. Chem. Commun. 2013, 49, 9917.

    6. [6]

    7. [7]

      Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.  doi: 10.1021/ja980139y

    8. [8]

      (a) Pei, Z.; Li, X.; von Geldern, T. W.; Longenecker, K.; Pireh, D.; Stewart, K. D.; Backes, B. J.; Lai, C.; Lubben, T. H.; Ballaron, S. J.; Beno, D. W. A.; Kempf-Grote, A. J.; Sham, H. L.; Trevillyan, J. M. J. Med. Chem. 2007, 50, 1983.
      (b) Nara, S.; Tanaka, R.; Eishima, J.; Hara, M.; Takahashi, Y.; Otaki, S.; Foglesong, R. J.; Hughes, P. F.; Turkington, S.; Kanada, Y. J. Med. Chem. 2003, 46, 2467.

    9. [9]

      Imashiro, R.; Uehara, H.; Barbas III, C. F. Org. Lett. 2010, 12, 5250.  doi: 10.1021/ol102292a

    10. [10]

      Uehara, H.; Imashiro, R.; Hernández-Torres, G.; Barbas III, C. F. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20672.  doi: 10.1073/pnas.1003350107

    11. [11]

      Basle, O.; Raimondi, W.; Duque, M. D. M. S.; Bonne, D.; Constantieux, T.; Rodriguez, J. Org. Lett. 2010, 12, 5246.  doi: 10.1021/ol102289g

    12. [12]

      Wang, Y.; Han, R. G.; Zhao, Y. L.; Yang, S.; Xu, P. F.; Dixon, D. J. Angew. Chem., Int. Ed. 2009, 48, 9834.  doi: 10.1002/anie.200905014

    13. [13]

      Mao, Z.; Jia, Y.; Xu, Z.; Wang, R. Adv. Synth. Catal. 2012, 354, 1401.  doi: 10.1002/adsc.201200008

    14. [14]

      For recent reviews, see: (a) Robinson, D. E. J. E.; Bull, S. D. Tetrahedron: Asymmetry 2003, 14, 1407.
      (b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.
      (c) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40, 284.
      (d) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.

    15. [15]

      Roy, S.; Chen, K. Org. Lett. 2012, 14, 2496.  doi: 10.1021/ol300783e

    16. [16]

      Zhou, B.; Yang, Y.; Shi, J.; Luo, Z.; Li, Y. J. Org. Chem. 2013, 78, 2897.  doi: 10.1021/jo302655u

    17. [17]

      For some typical references in this area, see: (a) Pearson, W. H.; Hines, J. V. J. Org. Chem. 1989, 54, 4235.
      (b) Kingston, D. G.; Samranayake, G.; Ivey, C. A. J. Nat. Prod. 1990, 3, 1.
      (c) Slade, J.; Stanton, J. L.; Ben-David, D.; Mazzenga, G. C. J. Med. Chem. 1985, 28, 1517.
      (d) Le, V.; Inai, M.; Williams, R.; Kan, T. Nat. Prod. Rep. 2015, 32, 328.
      (e) Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50, 7304.
      (f) Wang, Q.; Huang, W.; Yuan, H.; Cai, Q.; Chen, L.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 16120.

    18. [18]

      Hou, W.; Wei, Q.; Liu, G.; Chen, J.; Guo, J.; Peng, Y. Org. Lett. 2015, 17, 4870.  doi: 10.1021/acs.orglett.5b02423

    19. [19]

      Hou, W.; Wei, Q.; Peng, Y. Adv. Synth. Catal. 2016, 358, 1035.  doi: 10.1002/adsc.201600026

    20. [20]

      (a) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
      (b) Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1.

    21. [21]

      For some recent reviews, see: (a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 2, 422.
      (b) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 2, 826.
      (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

    22. [22]

      Huang, X.; Liu, M.; Jasinski, J. P.; Peng, B.; Zhang, W. Adv. Synth. Catal. 2017, 359, 1919.  doi: 10.1002/adsc.201700129

    23. [23]

      Wang, Y.; Yu, D. F.; Liu, Y. Z.; Wei, H.; Luo, Y. C.; Dixon, D. J.; Xu, P. F. Chem.-Eur. J. 2010, 16, 3922.  doi: 10.1002/chem.201000059

    24. [24]

      Enders, D.; Urbanietz, G.; Cassens-Sasse, E.; Keess, S.; Raabe, G. Adv. Synth. Catal. 2012, 354, 1481.  doi: 10.1002/adsc.201200120

    25. [25]

      Wu, M. Y.; He, W. W.; Liu, X. Y.; Tan, B. Angew. Chem., Int. Ed. 2015, 54, 9409.  doi: 10.1002/anie.201504640

    26. [26]

      Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.  doi: 10.1021/ja805693p

    27. [27]

      (a) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406.
      (b) Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science 2017, 358, 761.
      (c) Deng, Y. H.; Zhang, X. Z.; Yu, K. Y.; Yan, X.; Du, J. Y.; Huang, H.; Fan, C. A. Chem. Commun. 2016, 52, 4183.
      (d) Bae, H. Y.; Song, C. E. ACS Catal. 2015, 5, 3613.
      (e) Kasaplar, P.; Riente, P.; Hartmann, C.; Pericàs, M. A. Adv. Synth. Catal. 2012, 354, 2905.

    28. [28]

      (a) Didaskalou, C.; Kupai, J.; Cseri, L.; Barabas, J.; Vass, E.; Holtzl, T.; Szekely, G. ACS Catal. 2018, 8, 7430.
      (b) Kucherenko, A. S.; Kostenko, A. A.; Komogortsev, A. N.; Lichitsky, B. V.; Fedotov, M. Y.; Zlotin, S. G. J. Org. Chem. 2019, 84, 4304.
      (c) Liu, K.; Khan, I.; Cheng, J.; Hsueh, Y. J.; Zhang, Y. J. ACS Catal. 2018, 8, 11600.
      (d) Vural, U.; Durmaz, M.; Sirit, A. Org. Chem. Front. 2016, 3, 730.
      (e)Yang, W.; Du, D. M. Org. Lett. 2010, 12, 5450.

    29. [29]

    30. [30]

      Tian, L.; Hu, X. Q.; Li, Y. H.; Xu, P. F. Chem. Commun. 2013, 49, 7213.  doi: 10.1039/c3cc43755h

    31. [31]

      Chen, D. F.; Zhao, F.; Hu, Y.; Gong, L. Z. Angew. Chem., Int. Ed. 2014, 53, 10763.  doi: 10.1002/anie.201406098

    32. [32]

      (a) Eschenbrenner-Lux, V.; Küchler, P.; Ziegler, S.; Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53, 2134.
      (b) Mengozzi, L.; Gualandi, A.; Cozzi, P. G. Chem. Sci. 2014, 5, 3915.
      (c) Khashper, A.; Lubell, W. D. Org. Biomol. Chem. 2014, 12, 5052.
      (d) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775.
      (e) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149.

    33. [33]

      Blümel, M.; Chauhan, P.; Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 6012.  doi: 10.1021/ol503024d

    34. [34]

      Blüemel, M.; Chauhan, P.; Vermeeren, C.; Dreier, A.; Lehmann, C.; Enders, D. Synthesis 2015, 47, 3618.  doi: 10.1055/s-0035-1560072

    35. [35]

      For recent reviews on the synthesis of tetrahydropyrans, see: (a) Yeung, K. S.; Paterson, I. Chem. Rev. 2005, 105, 4237.
      (b) Nising, C. F.; Braese, S. Chem. Soc. Rev. 2012, 41, 988.
      (c) Larrosa, I.; Romea, P.; Urpí. F. Tetrahedron 2008, 64, 2683.

    36. [36]

      Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 3636.  doi: 10.1021/ol501236a

    37. [37]

      Chauhan, P.; Mahajan, S.; Loh, C. C.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 2954.  doi: 10.1021/ol501093v

    38. [38]

      Chauhan, P.; Urbanietz, G.; Raabe, G.; Enders, D. Chem. Commun. 2014, 50, 6853.  doi: 10.1039/C4CC01885K

    39. [39]

      Chauhan, P.; Mahajan, S.; Raabe, G.; Enders, D. Chem. Commun. 2015, 51, 2270.  doi: 10.1039/C4CC09730K

    40. [40]

      Sun, Q. S.; Chen, X. Y.; Zhu, H.; Lin, H.; Sun, X. W.; Lin, G. Q. Org. Chem. Front. 2015, 2, 110.  doi: 10.1039/C4QO00299G

    41. [41]

      Sun, Q. S.; Zhu, H.; Lin, H.; Tan, Y.; Yang, X. D.; Sun, X. W.; Sun, X. Tetrahedron Lett. 2016, 57, 5768.  doi: 10.1016/j.tetlet.2016.11.033

    42. [42]

      For some typical references in this area, see: (a) Yang, J.; Liu, G. Y.; Lu, D. L.; Dai, F.; Qian, Y. P.; Jin, X. L.; Zhou, B. Chem.-Eur. J. 2010, 16, 12808.
      (b) Koufaki, M.; Theodorou, E.; Galaris, D.; Nousis, L.; Katsanou, E. S.; Alexis, M. N. J. Med. Chem. 2006, 49, 300.
      (c) Koufaki, M.; Detsi, A.; Theodorou, E.; Kiziridi, C.; Calogeropoulou, T.; Vassilopoulos, A.; Kourounakis, A. P.; Rekka, E.; Kourounakis, P. N.; Gaitanaki, C.; Papazafiri, P. Bioorg. Med. Chem. 2004, 12, 4835.
      (d) Reddy, K. A.; Lohray, B. B.; Bhushan, V.; Reddy, A. S.; Mamidi, N. V. S. R.; Reddy, P. P.; Saibaba, V.; Reddy, N. J.; Suryaprakash, A.; Misra, P.; Vikramadithyan, R. K.; Rajagopalan, R. J. Med. Chem. 1999, 42, 3265.

    43. [43]

      Xiao, Y.; Lin, J. B.; Zhao, Y. N.; Liu, J. Y.; Xu, P. F. Org. Lett. 2016, 18, 6276.  doi: 10.1021/acs.orglett.6b03073

    44. [44]

      (a) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
      (b) Zhang, J.; Qian, Z.; Wu, X.; Ding, Y.; Li, J.; Lu, C.; Shen, Y. Org. Lett. 2014, 16, 2752.
      (c) Zhou, F.; Liu, Y. L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
      (d) Ziarani, G. M.; Moradi, R.; Lashgari, N. Tetrahedron: Asymmetry 2015, 26, 517.
      (e) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
      (f) Shen, K.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3, 327.

    45. [45]

      Lian, X. L.; Meng, J.; Han, Z. Y. Org. Lett. 2016, 18, 4270.  doi: 10.1021/acs.orglett.6b02019

    46. [46]

      Urruzuno, I.; Mugica, O.; Oiarbide, M.; Palomo, C. Angew. Chem., Int. Ed. 2017, 56, 2059.  doi: 10.1002/anie.201612332

    47. [47]

      (a) Hamama, W. S.; El-Gohary, H. G.; Kuhnert, N; Zoorob, H. H. Curr. Org. Chem. 2012, 16, 373.
      (b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
      (c) Yoshida, H.; Yanai, H.; Namiki, Y.; Fukatsu-Sasaki, K.; Furutani, N.; Tada, N. CNS Drug Rev. 2006, 12, 9.
      (d) Hadi, V.; Koh, Y. H.; Sanchez, T. W.; Barrios, D.; Neamati, N.; Jung, K. W. Bioorg. Med. Chem. Lett. 2010, 20, 6854.
      (e) Chande, M. S.; Barve, P. A.; Suryanarayan, V. J. Heterocycl. Chem. 2007, 44, 49.

    48. [48]

      Li, J. H.; Cui, Z. H.; Du, D. M. Org. Chem. Front. 2016, 3, 1087.  doi: 10.1039/C6QO00208K

    49. [49]

    50. [50]

      Xiao, Y.; Jiang, R.; Wang, Y.; Zhou, Z. Adv. Synth. Catal. 2018, 360, 1961.  doi: 10.1002/adsc.201800086

    51. [51]

      For some typical references in this area, see: (a) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chem. Soc. Rev. 2018, 47, 1142.
      (b) Zhang, Y. L.; He, B. J.; Xie, Y. W.; Wang, Y. H.; Wang, Y. L.; Shen, Y. C.; Huang, Y. Y. Adv. Synth. Catal. 2019, 361, 3074.
      (c) Kang, Q.; Zhao, Z. A.; You, S. L. J. Am. Chem. Soc. 2007, 129, 1484.
      (d) Wang, S. G.; Yin, Q.; Zhuo, C. X.; You, S. L. Angew. Chem., Int. Ed. 2015, 54, 647.
      (e) Yin, Q.; Wang, S. G.; You, S. L. Org. Lett. 2013, 15, 2688.
      (f) Zhang, K. F.; Nie, J.; Guo, R.; Zheng, Y.; Ma, J. A. Adv. Synth. Catal. 2013, 355, 3497.
      (g) Zhang, Y.; Ao, Y. F.; Huang, Z. T.; Wang, D. X.; Wang, M. X.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 5282.
      (h) Smith, M. J.; Reichl, K. D.; Escobar, R. A.; Heavey, T. J.; Coker, D. F.; Schaus, S. E.; Porco Jr, J. A. J. Am. Chem. Soc. 2018, 141, 148.

    52. [52]

      (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
      (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
      (c) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804.

    53. [53]

    54. [54]

      Zhu, G.; Wang, B.; Bao, X.; Zhang, H.; Wei, Q.; Qu, J. Chem. Commun. 2015, 51, 15510.  doi: 10.1039/C5CC05798A

    55. [55]

      Wu, S.; Zhu, G.; Wei, S.; Chen, H.; Qu, J.; Wang, B. Org. Biomol. Chem. 2018, 16, 807.  doi: 10.1039/C7OB03051G

    56. [56]

      For some recent reviews, see: (a) Si, Y.; Chen, M.; Wu, L. Chem. Soc. Rev. 2016, 45, 690.
      (b) Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L.; Yu, R.; Ma, G.; Su, Z.; Zhao, H.; Wang, D. Chem. Soc. Rev. 2015, 44, 6749.
      (c) Chen, Y.; Chen, H. R.; Shi, J. L. Acc. Chem. Res. 2014, 47, 125.
      (d) Sasidharan, M.; Nakashima, K. Acc. Chem. Res. 2014, 47, 157.

    57. [57]

      Dai, F.; Zhao, Z.; Xie, G.; Feng, D.; Ma, X. ChemCatChem 2017, 9, 89.  doi: 10.1002/cctc.201601120

    58. [58]

      (a) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Zhou, Z.; Wu, G.; Fang, J.; Tang, C. Eur. J. Org. Chem. 2010, 5777.
      (b) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Wu, G.; Zhou, Z.; Fang, J.; Tang, C. J. Org. Chem. 2011, 76, 3872.

    59. [59]

      Sun, J.; Jiang, C.; Zhou, Z. Eur. J. Org. Chem. 2016, 2016, 1165.

    60. [60]

      (a) Dong, S.; Feng, X.; Liu, X. Chem. Soc. Rev. 2018, 47, 8525.
      (b) Xie, L.; Dong, S.; Zhang, Q.; Feng, X.; Liu, X. Chem. Commun. 2018, 55, 87.
      (c) Kang, T.; Zhao, P.; Yang, J.; Lin, L.; Feng, X.; Liu, X. Chem.-Eur. J. 2018, 24, 3703.
      (d) Cui, X. Y.; Tan, C. H.; Leow, D. Org. Biomol. Chem. 2019, 17, 4689.

    61. [61]

      Chen, Y.; Liu, X.; Luo, W.; Lin, L.; Feng, X. Synlett 2017, 28, 966.  doi: 10.1055/s-0036-1588940

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    9. [9]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    10. [10]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    14. [14]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

Metrics
  • PDF Downloads(19)
  • Abstract views(1843)
  • HTML views(382)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return