Citation: Liu Na, Guo Siqi, Liu Junfang, Chen Yantao, Xu Xiaoming, Zhang Jing, Kang Yaqing, Luo Cheng, Chen Shijie, Chen Hua. Design, Synthesis, and Biological Activities of Novel Triazolothiadiazole Derivatives Linked with Amino Side Chain Containing Urea Group as DOT1L Inhibitors[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2450-2459. doi: 10.6023/cjoc201910037 shu

Design, Synthesis, and Biological Activities of Novel Triazolothiadiazole Derivatives Linked with Amino Side Chain Containing Urea Group as DOT1L Inhibitors

  • Corresponding author: Chen Shijie, shijiechen@simm.ac.cn Chen Hua, hua-todd@163.com
  •  Those authors contributed equally to this work.
  • Received Date: 29 October 2019
    Revised Date: 13 January 2020
    Available Online: 25 May 2020

    Fund Project: Project supported by the Natural Science Interdisciplinary Research Program of Hebei University (No. DXK201903)the Natural Science Interdisciplinary Research Program of Hebei University DXK201903

Figures(8)

  • Based on the drug design method of combination of privileged fragments, a series of novel triazolothiadiazole derivatives linked with amino side chain containing urea group were designed as potential DOT1L (disruptor of telomeric silencing 1-like) inhibitors. The intermediate 13 with benzyl chloride on triazolothiadiazole structure was synthesized from aromatic acid through five steps. Under the condition of weak base (DIPEA), the nucleophilic substitution reaction between 13 and amino chain with urea group resulted in triazolothiadiazole derivatives linked with amino side chain containing urea group 15a~15k, while under the condition of strong base (NaH), the new dimeric structure analogues 22a~22d bearing with triazolothiadiazole-triazolothiadiazine were obtained by intermolecular reaction of two molecules of 13. The inhibitory activities of compounds 15 and 22 against DOT1L were tested. The results showed that the tested compounds exhibited moderate or weak DOT1L inhibitory activities at 50 μmol·L-1. Among them, compounds 15k and 22a were the best ones with IC50 values of 25.92 and 10.59 μmol·L-1, respectively, lower than that of the positive control (E)-6-(2-(furan-2-yl)vinyl)-3-phenyl-[1, 2, 4]triazolo[3, 4-b] [1, 3, 4]thiadiazole (10). The results of docking experiments suggested that the bulky amino-urea side chain might be the main reason for the loss of the activities of the compounds, which sterically hindered the molecular from binding to the DOT1L enzyme.
  • 加载中
    1. [1]

      Min, J. R.; Feng, Q.; Li, Z. Z.; Zhang, Y.; Xu, R. M. Cell 2003, 112, 711.  doi: 10.1016/S0092-8674(03)00114-4

    2. [2]

      Kim, W.; Choi, M.; Kim, J. E. Cell Cycle 2014, 13, 726.  doi: 10.4161/cc.28104

    3. [3]

      Bernt, K. M.; Zhu, N.; Sinha, A. U.; Vempati, S.; Faber, J.; Krivtsov, A. V.; Feng, Z.; Punt, N.; Daigle, A.; Bullinger, L.; Pollock, R. M.; Richon, V. M.; Kung, A. L.; Armstrong, S. A. Cancer Cell 2011, 20, 66.  doi: 10.1016/j.ccr.2011.06.010

    4. [4]

      Lillico, R.; Lawrence, C. K. Lakowski, T. M. J. Proteome Res. 2018, 17, 2657.  doi: 10.1021/acs.jproteome.8b00118

    5. [5]

      Anglin, J. L.; Song, Y. J. Med. Chem. 2013, 56, 8972.  doi: 10.1021/jm4007752

    6. [6]

      Zhou, S. H.; Sun, P. J.; Zhao, Y. Q.; Zhang, Y.; Yu, N. F. Acta Pharm. Sin. 2018, 53, 500(in Chinese).

    7. [7]

      Ümit Kaniskan, H.; Martini, M. L.; Jin, J. Chem. Rev. 2018, 118, 989.  doi: 10.1021/acs.chemrev.6b00801

    8. [8]

      Basavapathruni, A.; Jin, L.; Daigle, S. R.; Majer, C. R.; Therkelsen, C. A.; Wigle, T. J.; Kuntz, K. W.; Chesworth, R.; Pollock, R. M.; Scott, M. P. Moyer, M. P.; Richon, V. M.; Copeland, R. A.; Olhava, E. J. Chem. Biol. Drug Des. 2012, 80, 971.  doi: 10.1111/cbdd.12050

    9. [9]

      Daigle, S. R.; Olhava, E. J.; Therkelsen, C. A.; Majer, C. R.; Sneeringer, C. J.; Song, J.; Johnston, L. D.; Scott, M. P.; Smith, J. J.; Xiao, Y.; Jin, L.; Kuntz, K. W.; Chesworth, R.; Moyer, M. P.; Bernt, K. M.; Tseng, J. C.; Kung, A. L.; Copeland, R. A.; Richon, V. M.; Pollock, R. M. Cancer Cell 2011, 20, 53.  doi: 10.1016/j.ccr.2011.06.009

    10. [10]

      Stein, E. M.; Garcia-Manero, G.; Rizzieri, D. A.; Savona, M.; Tibes, R.; Altman, J. K.; Jongen-Lavrencic, M.; Dohner, H.; Armstrong, S.; Pollock, R. M.; Waters, N. J.; Legler, M.; Thomson, B.; Daigle, S.; McDonald, A.; Campbell, C.; Olhava, E.; Hedrick, E. E.; Lowenberg, B.; Copeland, R. A.; Tallman, M. S. Blood 2014, 124, 387.  doi: 10.1182/blood.V124.21.387.387

    11. [11]

      Yao, Y.; Chen, P.; Diao, J.; Cheng, G.; Deng, L.; Anglin, J. L.; Prasad, B. V.; Song, Y. J. Am. Chem. Soc. 2011, 133, 16746.  doi: 10.1021/ja206312b

    12. [12]

      Anglin, J. L.; Deng, L.; Yao, Y.; Cai, G.; Liu, Z.; Jiang, H.; Cheng, G.; Chen, P.; Dong, S.; Song, Y. J. Med. Chem. 2012, 55, 8066.

    13. [13]

      Yu, W.; Chory, E. J.; Wernimont, A. K.; Tempel, W.; Scopton, A.; Federation, A.; Marineau, J. J.; Qi, J.; Barsyte-Lovejoy, D.; Yi, J.; Marcellus, R.; Iacob, R. E.; Engen, J. R.; Griffin, C.; Aman, A.; Wienholds, E.; Li, F.; Pineda, J.; Estiu, G.; Shatseva, T.; Hajian, T.; Al-Awar, R.; Dick, J. E.; Vedadi, M.; Brown, P. J.; Arrowsmith, C. H.; Bradner, J. E.; Schapira, M. Nat. Commun. 2012, 3, 1288.  doi: 10.1038/ncomms2304

    14. [14]

      Yu, W.; Smil, D.; Li, F.; Tempel, W.; Fedorov, O.; Nguyen, K. T.; Bolshan, Y.; Al-Awar, R.; Knapp, S.; Arrowsmith, C. H.; Vedadi, M.; Brown, P. J.; Schapira, M. Bioorg. Med. Chem. 2013, 21, 1787.  doi: 10.1016/j.bmc.2013.01.049

    15. [15]

      Spurr, S. S.; Bayle, E. D.; Yu, W. Y.; Li, F. L.; Tempel, W.; Vedadi, M.; Schapira, M.; Fish, P. V. Bioorg. Med. Chem. Lett. 2016, 26, 4518.  doi: 10.1016/j.bmcl.2016.07.041

    16. [16]

      Chen, J.; Park, H. J. ACS Chem. Biol. 2019, 14, 873.  doi: 10.1021/acschembio.8b00933

    17. [17]

      Scheufler, C.; Möbitz, H.; Gaul, C.; Ragot, C.; Be, C.; Fernández, C.; Beyer, K. M.; Tiedt, R.; Stauffer, F. ACS Med. Chem. Lett. 2016, 7, 730.  doi: 10.1021/acsmedchemlett.6b00168

    18. [18]

      Chao, C.; Zhu, H.; Stauffer, F.; Caravatti, G.; Vollmer, S.; Machauer, R.; Holzer, P.; Möbitz, H.; Scheufler, C.; Klumpp, M.; Tiedt, R.; Beyer, K. S.; Calkins, K.; Guthy, D.; Kiffe, M.; Zhang, J.; Gaul, C. ACS Med. Chem. Lett. 2016, 7, 735.  doi: 10.1021/acsmedchemlett.6b00167

    19. [19]

      Möbitz, H.; Machauer, R.; Holzer, P.; Vaupel, A.; Stauffer, F.; Ragot, C.; Caravatti, G.; Scheufler, C.; Fernández, C.; Hommel, U.; Tiedt, R.; Beyer, K. S.; Chao, C.; Zhu, H.; Gaul, C. ACS Med. Chem. Lett. 2017, 8, 338.  doi: 10.1021/acsmedchemlett.6b00519

    20. [20]

      Chen, S. J.; Wang, Y. L.; Zhou, W.; Li, S. S.; Peng, J. L.; Shi, Z.; Hu, J. C.; Liu, Y. C.; Ding, H.; Lin, Y. Y.; Li, L. J.; Cheng, S. F.; Liu, J. Q.; Lu, T.; Jiang, H. L.; Liu, B.; Zheng, M. Y.; Luo, C. J. Med. Chem. 2014, 57, 9028.  doi: 10.1021/jm501134e

    21. [21]

      Chen, S.; Li, L.; Chen, Y.; Hu, J.; Liu, J.; Liu, Y. C.; Liu, R.; Zhang, Y.; Meng, F.; Zhu, K.; Lu, J.; Zheng, M.; Chen, K.; Zhang, J.; Jiang, H.; Yao, Z.; Luo, C. J. Chem. Inf. Model. 2016, 56, 527.  doi: 10.1021/acs.jcim.5b00738

    22. [22]

      Wang, Y. L.; Li, L. J.; Zhang, B. D.; Xing, J.; Chen, S. J.; Wan, W.; Song, Y. K.; Jiang, H.; Jiang, H. L.; Luo, C.; Zheng, M. Y. J. Med. Chem. 2017, 60, 2026.  doi: 10.1021/acs.jmedchem.6b01785

    23. [23]

      Song, Y. K.; Li, L. J.; Chen, Y. T.; Liu, J. Q.; Xiao, S. H.; Lian, F. L.; Zhang, N. X.; Ding, H.; Zhang, Y. Y.; Chen, K. X.; Jiang, H. L.; Zhang, C. H.; Liu, Y. C.; Chen, S. J.; Luo, C. Bioorg. Med. Chem. 2018, 26, 1751.  doi: 10.1016/j.bmc.2018.02.020

    24. [24]

      Zhang, L.; Chen, Y. T.; Liu, N.; Li, L. J.; Xiao, S. H.; Li, X. L.; Chen, K. X.; Luo, C.; Chen, S. J.; Chen, H. Bioorg. Chem. 2018, 80, 649.  doi: 10.1016/j.bioorg.2018.07.022

    25. [25]

      Cui, P. L.; Li, X. L.; Zhu, M. Y.; Wang, B. H.; Liu, J.; Chen, H. Eur. J. Med. Chem. 2017, 127, 159.  doi: 10.1016/j.ejmech.2016.12.053

    26. [26]

      Maestro, Version 10.4, Schrödinger, LLC, New York, 2015.

    27. [27]

      Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.  doi: 10.1021/jm0306430

    28. [28]

      Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J. Med. Chem. 2006, 49, 6177.  doi: 10.1021/jm051256o

    29. [29]

      Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Thomas Pollard, W.; Banks, J. L. J. Med. Chem. 2004, 47, 1750.  doi: 10.1021/jm030644s

    30. [30]

      Glide, Version 6.9, Schrödinger, LLC, New York, 2015.

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    18. [18]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(6)
  • Abstract views(1328)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return