Citation: Shi Chuanxing, Feng Chenguo, Chen Yali, Zhang Shusheng, Lin Guoqiang. Recent Advancement in Benzofulvene Synthesis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 817-830. doi: 10.6023/cjoc201910029 shu

Recent Advancement in Benzofulvene Synthesis

  • Corresponding author: Chen Yali, ylchen@staff.shu.edu.cn Zhang Shusheng, zhangss@sioc.ac.cn
  • Received Date: 25 October 2019
    Revised Date: 17 December 2019
    Available Online: 3 January 2020

    Fund Project: the National Natural Science Foundation of China 21572253the Strategic Priority Research Program of the Chinese Academy of Sciences XDB 20020100Project supported by the National Natural Science Foundation of China (Nos. 21572253, 21772216), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB 20020100), and the Key Research Program of Frontier Science (No. QYZDY-SSWSLH026)the Key Research Program of Frontier Science QYZDY-SSWSLH026the National Natural Science Foundation of China 21772216

Figures(23)

  • Benzofulvenes were widely found in natural products and bioactive molecules, and also served as important building blocks in material science and transition-metal chemistry. Great efforts have been devoted to the efficient synthesis of these interesting molecules, and rapid advancement has been made in the past two decades. According to the types of the initiation of the reaction, these methods can roughly be classified into five categories:thermal or photochemical cyclization of enyne-al-lenes or enediynes, transition metal-catalyzed sequential cyclization reaction, electrophilic or nucleophilic attack initiated cyclization, radical initiated cyclization and acid promoted cyclization. This review describes the important synthetic methods of benzofulvenes according to their reaction types.
  • 加载中
    1. [1]

      Thiele, J. Chem. Ber. 1900, 33, 666.  doi: 10.1002/cber.190003301113

    2. [2]

      Yates, P. V. Adv. Alicyclic Chem. 1968, 2, 59.  doi: 10.1016/B978-1-4831-9918-4.50008-9

    3. [3]

      Simple examples for application, see: (a) Kosaka, Y.; Kitazawa, K.; Inomata, S.; Ishizone, T. ACS Macro Lett. 2013, 2, 164.
      (b) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Grassi, M.; Lapasin, R.; Grassi, G.; Farra, R.; Dapas, B.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Vomero, S. Macromolecules 2009, 42, 2368.

    4. [4]

      (a) Douglas, A. W.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1995, 36, 3993.
      (b) Shanmugam P.; Rajasingh, P. Chem. Lett. 2005, 34, 1494.

    5. [5]

      (a) Walters, M. J.; Blobaum, A. L.; Kingsley, P. J.; Felts, A. S.; Sulikowski, G. A.; Marnett, L. J. Bioorg. Med. Chem. Lett. 2009, 19, 3271.
      (b) Felts, A. S.; Siegel, B. S.; Young, S. M.; Moth, C. W.; Lybrand, T. P.; Dannenberg, A. J.; Marnett, L. J.; Subbaramaiah, K. J. Med. Chem. 2008, 51, 4911.
      (c) Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 2397.
      (d) Maguire, A. R.; Papot, S.; Ford, A.; Touhey, S.; O'Connor, R.; Clynes, M. Synlett 2001, 41.

    6. [6]

      (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew. Chem., Int. Ed. 2007, 46, 8186.
      (b) Jeffrey, J. L.; Sarpong, R. Tetrahedron Lett. 2009, 50, 1969.
      (c) Singer, R. A.; McKinley, J. D.; Barbe, G.; Farlow, R. A. Org. Lett. 2004, 6, 2357.

    7. [7]

      (a) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Donati, A.; Zetta, L.; Mendichi, R.; Aggravi, M.; Giorgi, G.; Paccagnini, E.; Vomero, S. Macromolecules 2007, 40, 3005.
      (b) Cappelli, A.; Galeazzi, S.; Giuliani, G.; Anzini, M.; Grassi, M.; Lapasin, R.; Grassi, G.; Farra, R.; Dapas, B.; Aggravi, M.; Donati, A.; Zetta, L.; Boccia, A. C.; Bertini, F.; Samperi, F.; Vomero, S. Macromolecules 2009, 42, 2368.
      (c) Cappelli, A.; Paolino, M.; Grisci, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Botta, C.; Mroz, W.; Samperi, F.; Scamporrino, A.; Giorgi, G.; Vomero, S. J. Mater. Chem. 2012, 22, 9611.
      (d) Kosaka, Y.; Kitazawa, K.; Inomata, S.; Ishizone, T. ACS Macro Lett. 2013, 2, 164.
      (e) Cappelli, A.; Villafiorita-Monteleone, F.; Grisci, G.; Paolino, M.; Razzano, V.; Fabio, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Pasini, M.; Botta, C. J. Mater. Chem. C 2014, 2, 7897.
      (f) Cappelli, A.; Razzano, V.; Paolino, M.; Grisci, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Samperi, F.; Battiato, S.; Boccia, A. C.; Mura, A.; Bongiovanni, G.; Mroz, W.; Botta, C. Polym. Chem. 2015, 6, 7377.
      (g) Kosaka, Y.; Kawauchi, S.; Goseki, R.; Ishizone, T. Macro-molecules 2015, 48, 4421.
      (h) Wang, W.; Schlegel, R.; White, B. T.; Williams, K.; Voyloy, D.; Steren, C. A.; Goodwin, A.; Coughlin, E. B.; Gido, S.; Beiner, M.; Hong, K.; Kang, N.-G.; Mays, J. Macromolecules 2016, 49, 2646.
      (i) Chen. S.-D.; Li, Q.-P.; Sun, S.-Y.; Ding, Y.; Hu, A.-H. Macromolecules 2017, 50, 534.

    8. [8]

      (a) Fischer, M.; Oswald, T.; Ebert, H.; Schmidtmann, M.; Beckhaus, R. Organometallics 2018, 37, 415.
      (b) Rogers, J. S.; Lachicotte, R. J.; Bazan, G. C. Organometallics 1999, 18, 3976.

    9. [9]

      Habaue, S.; Sakamoto, H.; Okamoto, Y. Polym. J. 1997, 29, 384.  doi: 10.1295/polymj.29.384

    10. [10]

      Jaquith, J. B.; Guan, J.; Wang, S.; Collins, S. Organometallics 1995, 14, 1079.  doi: 10.1021/om00003a001

    11. [11]

      Yuki, K.; Susumu, K.; Raita, K.; Takashi, I. Macromolecules 2015, 48, 4421.  doi: 10.1021/acs.macromol.5b00944

    12. [12]

      Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453.  doi: 10.1016/0040-4020(96)00016-6

    13. [13]

      (a) Mers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 8057.
      (b) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995.

    14. [14]

      Matthias, P.; Alexander, W.; Peter, R. S. J. Phys. Chem. A 2001, 105, 9265.  doi: 10.1021/jp0028002

    15. [15]

      Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36, 4975.  doi: 10.1016/00404-0399(50)09378-

    16. [16]

      Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M. Tetrahedron Lett. 1996, 37, 7691.
      (b) Schmittel, M.; Maywald, M.; Strittmatter, M. Synlett 1997, 165.

    17. [17]

      Igor, V. A.; Serguei, V. K. J. Am. Chem. Soc. 2002, 124, 9052  doi: 10.1021/ja026630d

    18. [18]

      Schmittel, M.; Mahajan, A. A.; Bucher, G.; Bats, J. W. J. Org. Chem. 2007, 72, 2166.  doi: 10.1021/jo062448+

    19. [19]

      Vavilala, C.; Byrne, N.; Kraml, C. M.; Douglas, M.; Pascal, J. R. J. Am. Chem. Soc. 2008, 130, 13549.  doi: 10.1021/ja803413f

    20. [20]

      Bucher, G.; Mahajan, A.; Schmittel, M. J. Org. Chem. 2008, 73, 8815.  doi: 10.1021/jo801689w

    21. [21]

      Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.; Endo, K.; Shibata, T. J. Organomet. Chem. 2008, 693, 3939.  doi: 10.1016/j.jorganchem.2008.09.065

    22. [22]

      Tsuchikama, K.; Kasagawa, M.; Endo, K.; Shibata, T. Synlett 2010, 1, 97.

    23. [23]

      Patureau, F, W.; Besset, T.; Kuhl, T.; Glorius, J. F. J. Am. Chem. Soc. 2011, 133, 2154.  doi: 10.1021/ja110650m

    24. [24]

      (a) Chinnagolla, R. K.; Jeganmohan, M. Eur. J. Org. Chem. 2012, 417.
      (b) Yu, Y.; Wu, Q.; Liu, D.; Hu, L.; Yu, L.; Tan, Z.; Zhu, G. J. Org. Chem. 2019, 84, 7449.

    25. [25]

      Guo, B.; Zheng, L.Y.; Zheng, Z. L.; Hua, R. M. J. Org. Chem. 2015, 80, 8430.  doi: 10.1021/acs.joc.5b01304

    26. [26]

      Raju, S.; Hsiao, H.-C.; Thirupathi, S.; Chen, P.-L.; Chuang, S.-C. Adv. Synth. Catal. 2019, 361, 683.  doi: 10.1002/adsc.201801352

    27. [27]

      Dyker, G.; Nerenz, F.; Siemsen, P.; Bubenitschek, P.; Jones, P. G. Chem. Ber. 1996, 1265.
       

    28. [28]

      Singer, R. A.; McKinley, J. D.; Barbe, G.; Farlow, R. A. Org. Lett. 2004, 6, 2357.  doi: 10.1021/ol049316s

    29. [29]

      Furuta, T.; Asakawa, T.; Iinuma, M.; Fujii, S.; Tanaka, K.; Kan, T. Chem. Commun. 2006, 3648.
       

    30. [30]

      Abdur Rahman, S. M.; Sonoda, M.; Ono, M.; Miki, K.; Tobe, Y., Org. Lett. 2006, 8, 1197.  doi: 10.1021/ol0600281

    31. [31]

      Li, C.-K.; Zeng, Y.; Wang, J.-B. Tetrahedron Lett. 2009, 50, 2956.  doi: 10.1016/j.tetlet.2009.03.203

    32. [32]

      Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406.
       

    33. [33]

      (a) Ye, S.-Q.; Yang X.-D.; Wu, J. Chem. Commun. 2010, 46, 2950.
      (b) Ye, S.-Q.; Ren, H.; Wu, J. J. Comb. Chem. 2010, 12, 670.

    34. [34]

      Bryan C. S.; Lautens, M. Org. Lett. 2010, 12, 2754.  doi: 10.1021/ol100844v

    35. [35]

      Kim, K. H.; Kim, S. H.; Park, B. R.; Kim, J.-N. Tetrahedron Lett. 2010, 51, 3368.  doi: 10.1016/j.tetlet.2010.04.110

    36. [36]

      Lim, C. H.; Kim, K. H.; Lim, J. W.; Kim, J. N. Tetrahedron Lett. 2013, 54, 5808.  doi: 10.1016/j.tetlet.2013.08.053

    37. [37]

      (a) Wang, W.-Y.; Sun, L. L.; Deng, C. L.; Tang, R.-Y.; Zhang, X.-G. Synthesis 2013, 45, 118.
      (b) Zhang, T.; Chen, F.; Zhang, X.-H.; Qian, P.-C.; Zhang, X.-G. J. Org. Chem. 2019, 84, 307.

    38. [38]

      (a) Álvarez, E.; Miguel, D.; García-García, P.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R. Synthesis 2012, 44, 1874.
      (b) Alvarez, E.; Nieto Faza, O.; Silva Lopez, C.; Fernandez-Rodri-guez, M. A.; Sanz, R. Chem.-Eur. J. 2015, 21, 12889.

    39. [39]

      Chen, Z.; Jia, X.; Huang, J.; Yuan, J. J. Org. Chem. 2014, 79, 10674.  doi: 10.1021/jo5020245

    40. [40]

      Hou, Q. W.; Zhang, Z. H.; Kong, F. J.; Wang, S. Z.; Wang, H. Q.; Yao, Z. J. Chem. Commun. 2013, 49, 695.  doi: 10.1039/C2CC36245G

    41. [41]

      Aziz, J.; Brion, J.-D.; Alami, M.; Hamze, A. RSC Adv. 2015, 5, 74391.  doi: 10.1039/C5RA14459K

    42. [42]

      Shin, S.; Son, J. Y.; Choi, C.; Kim, S.; Lee, P. H. J. Org. Chem. 2016, 81, 11706.  doi: 10.1021/acs.joc.6b02140

    43. [43]

      Zhou, B.; Wu, Z.; Qi, W.; Sun, X.; Zhang, Y. Adv. Synth. Catal. 2018, 360, 4480.  doi: 10.1002/adsc.201801141

    44. [44]

      Peng, J.-B.; Wu, F.-P.; Spannenberg, A.; Wu, X.-F. Chem. Eur. J. 2019, 25, 8696.

    45. [45]

      Borthakur, S.; Baruah, S.; Sarma, B.; Gogoi, S. Org. Lett. 2019, 21, 2768.  doi: 10.1021/acs.orglett.9b00726

    46. [46]

      (a) Hashmi, A. S. K.; Braun, I.; Noesel, P.; Schaedlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 4456.
      (b) Plajer, A; Ahrens, L.; Wieteck, M.; Lustosa, D. M.; Babaahmadi, R.; Yates, B.; Ariafard, A.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem.-Eur. J. 2018, 24, 10766.

    47. [47]

      Salacz, L.; Girard, N.; Suffert, J.; Blond, G. Molecules 2019, 24, 595.  doi: 10.3390/molecules24030595

    48. [48]

      Whitlock, H. W.; Sandvick, P. E.; Overman, L. E.; Reichardt, P. B. J Org. Chem. 1969, 34, 879.  doi: 10.1021/jo01256a023

    49. [49]

      (a) Schreiner, P. R.; Prall, M.; Lutz, V. Angew. Chem., Int. Ed. 2003, 42, 5757.
      (b) Garcia-Garcia, P.; Sanjuan, A. M.; Rashid, M. A.; Martinez-Cuezva, A.; Fernandez-Rodriguez, M. A.; Rodriguez, F.; Sanz, R. J. Org. Chem. 2017, 82, 1155.

    50. [50]

      Huang, X.; Yang, Y. Org. Lett. 2007, 9, 1667.  doi: 10.1021/ol070331h

    51. [51]

      Xiao, Q.; Zhu, H.; Li, G.; Chen, Z. Adv. Synth. Catal. 2014, 356, 3809.  doi: 10.1002/adsc.201400561

    52. [52]

      Martinelli, C.; Cardone, A.; Pinto, V.; Mastropasqua Talamo, M.; D'Arienzo, M. L.; Mesto, E.; Schingaro, E.; Scordari, F.; Naso, F.; Musio, R.; Farinola, G. M. Org. Lett. 2014, 16, 3424.  doi: 10.1021/ol5015366

    53. [53]

      König, B.; Pitsch, W.; Klein, M.; Vasold, R.; Prall, M.; Schreiner, P. R. J. Org. Chem. 2001, 66, 1742.  doi: 10.1021/jo001417q

    54. [54]

      Kovalenko, S. V.; Peabody, S.; Manoharan, M.; Clark, R. J.; Alabugin, I. V. Org. Lett. 2004, 6, 2457.  doi: 10.1021/ol049122c

    55. [55]

      Peabody, S. W.; Breiner, B.; Kovalenko, S. V.; Patil, S.; Alabugin, I. V. Org. Biomol. Chem. 2005, 3, 218.  doi: 10.1039/b417493n

    56. [56]

      Qin, X.-Y.; He, L.; Li, J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2019, 55, 3227.  doi: 10.1039/C9CC00324J

    57. [57]

      Cordier, P.; Aubert, C.; Malacria, M.; Lacote, E.; Gandon, V. Angew. Chem., Int. Ed. 2009, 48, 8757.  doi: 10.1002/anie.200903675

    58. [58]

      Sousa, C. M.; Berthet, J.; Delbaere, S.; Coelho P. J. J. Org. Chem. 2014, 79, 5781.  doi: 10.1021/jo500907z

    59. [59]

      Sai, M.; Matsubara, S. Synlett 2014, 25, 2067.  doi: 10.1055/s-0034-1378333

    60. [60]

      Warner, A. J.; Enright, K. M.; Cole, J. M.; Yuan, K.; McGough, J. S.; Ingleson, M. J. Org. Biomol. Chem. 2019, 17, 5520.  doi: 10.1039/C9OB00991D

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    10. [10]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    13. [13]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    14. [14]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    20. [20]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

Metrics
  • PDF Downloads(40)
  • Abstract views(2956)
  • HTML views(704)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return