Recent Progress on[3+2] Ring-Expansion Reaction of Cyclopropane with Unsaturated Compounds
- Corresponding author: Mu Weihua, weihua_mu@ynnu.edu.cn
Citation:
Liu Wenzhu, Dou Lijuan, Mu Weihua. Recent Progress on[3+2] Ring-Expansion Reaction of Cyclopropane with Unsaturated Compounds[J]. Chinese Journal of Organic Chemistry,
;2020, 40(5): 1150-1176.
doi:
10.6023/cjoc201910019
Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.
doi: 10.1021/cr00091a005
Khoury, P. R.; Goddard, J. D.; Tam, W. Tetrahedron 2004, 60, 8103.
doi: 10.1016/j.tet.2004.06.100
Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
doi: 10.1021/acs.chemrev.5b00138
Bach, R. D.; Dmitrenko, O. J. Org. Chem. 2002, 67, 2588.
doi: 10.1021/jo016241m
Wang, L.; Xu, J.-H. Chin. J. Org. Chem. 2003, 23, 750(in Chinese).
Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
doi: 10.1016/j.tet.2004.10.077
Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
doi: 10.1021/cr050988l
Yuan, M.-F.; Chen, Y.-L.; Ding, W.-Y.; Cao, W.-G. Chin. J. Org. Chem. 2003, 23, 901(in Chinese).
Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797.
doi: 10.1351/PAC-CON-09-09-28
Mel'nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendeleev Commun. 2011, 21, 293.
doi: 10.1016/j.mencom.2011.11.001
Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.
doi: 10.1039/C3CS60238A
De Nanteuil, F.; de Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912.
doi: 10.1039/C4CC03194F
Pandey, A. K.; Ghosh, A.; Banerjee, P. Isr. J. Chem. 2016, 56, 512.
doi: 10.1002/ijch.201500100
Pagenkopf, B. L.; Vemula, N. Eur. J. Org. Chem. 2017, 2017, 2561.
doi: 10.1002/ejoc.201700201
Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655.
doi: 10.1039/C4OB02117G
Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504.
doi: 10.1002/anie.201309886
Rassadin, V. A.; Six, Y. Tetrahedron 2016, 72, 4701.
doi: 10.1016/j.tet.2016.06.014
Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493.
doi: 10.1021/cr078376j
Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
doi: 10.1021/cr010016n
Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.
doi: 10.1039/b901245c
Tang, P.; Qin, Y. Synthesis 2012, 44, 2969.
doi: 10.1055/s-0032-1317011
Wang, Z. Synlett 2012, 23, 2311.
doi: 10.1055/s-0032-1317082
Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.
doi: 10.1021/ar800104y
Wang, L.; Zhou, J.; Tang, Y. Chin. J. Chem. 2018, 36, 1123.
doi: 10.1002/cjoc.201800373
Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 6659.
doi: 10.1016/j.tetlet.2008.09.028
De Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 12075.
doi: 10.1002/anie.201106255
De Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. J. Am. Chem. Soc. 2014, 136, 6239.
doi: 10.1021/ja5024578
Waser, J.; Serrano, E.; de Nanteuil, F. Synlett 2014, 25, 2285.
doi: 10.1055/s-0034-1378512
Racine, S.; de Nanteuil, F.; Serrano, E.; Waser, J. Angew. Chem., Int. Ed. 2014, 53, 8484.
doi: 10.1002/anie.201404832
Mackay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626.
doi: 10.1021/ol500256n
Verma, K.; Banerjee, P. Adv. Synth. Catal. 2016, 358, 2053.
doi: 10.1002/adsc.201600221
Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304.
doi: 10.1021/acs.orglett.6b03276
Verma, K.; Banerjee, P. Adv. Synth. Catal. 2017, 359, 3848.
doi: 10.1002/adsc.201700744
Volkova, Y. A.; Budynina, E. M.; Kaplun, A. E.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Rybakov, V. B.; Trushkov, I. V.; Melnikov, M. Y. Chem.-Eur. J. 2013, 19, 6586.
doi: 10.1002/chem.201300731
Chagarovskiy, A. O.; Budynina, E. M.; Ivanova, O. A.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Tetrahedron 2009, 65, 5385.
doi: 10.1016/j.tet.2009.04.061
Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Grishin, Y. K.; Trushkov, I. V.; Melnikov, M. Y. J. Org. Chem. 2015, 80, 12212.
doi: 10.1021/acs.joc.5b02146
Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851.
doi: 10.1021/ja4042127
Yan, W.; Wang, P.; Wang, L.; Sun, X.; Tang, Y. Acta Chim. Sinica 2017, 75, 783(in Chinese).
Kaicharla, T.; Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Angew. Chem., Int. Ed. 2016, 55, 10061.
doi: 10.1002/anie.201604373
Pandey, A. K.; Varshnaya, R. K.; Banerjee, P. Eur. J. Org. Chem. 2017, 2017, 1647.
doi: 10.1002/ejoc.201601549
Xia, X.-F.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. Asian J. 2012, 7, 1538.
doi: 10.1002/asia.201200104
Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032.
doi: 10.1002/anie.201206484
Wang, Z.; Ren, J.; Wang, Z. Org. Lett. 2013, 15, 5682.
doi: 10.1021/ol402662j
Thangamani, M.; Srinivasan, K. J. Org. Chem. 2018, 83, 571.
doi: 10.1021/acs.joc.7b02335
Zhu, J.; Liang, Y.; Wang, L.; Zheng, Z.-B.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900.
doi: 10.1021/ja503117q
Mukherjee, P.; Das, A. R. J. Org. Chem. 2017, 82, 2794.
doi: 10.1021/acs.joc.7b00089
Jackson, S. T.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196.
Curiel Tejeda, J. E.; Irwin, L. C.; Kerr, M. A. Org. Lett. 2016, 18, 4738.
doi: 10.1021/acs.orglett.6b02409
Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688.
doi: 10.1021/ja1032277
Alajarin, M.; Egea, A.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2016, 14, 10275.
doi: 10.1039/C6OB02005D
Feng, M.; Yang, P.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2017, 83, 174.
Tsunoi, S.; Maruoka, Y.; Suzuki, I.; Shibata, I. Org. Lett. 2016, 47, 4010.
Preindl, J.; Chakrabarty, S.; Waser, J. Chem. Sci. 2017, 8, 7112.
doi: 10.1039/C7SC03197A
Zhang, M.-C.; Wang, D.-C.; Xie, M.-S.; Qu, H.-M.; Guo, H.-M.; You, S.-L. Chem. 2019, 5, 156.
doi: 10.1016/j.chempr.2018.10.003
Hao, E.-J.; Fu, D.-D.; Wang, D.-C, Zhang, T.; Qu, G.-R.; Li, G.-X.; Lan, Y.; Guo, H.-M. Org. Chem. Front. 2019, 6, 863.
doi: 10.1039/C9QO00039A
Akaev, A. A.; Bezzubov, S. I.; Desyatkin, V. G.; Vorobyeva, N. S.; Majouga, A. G.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2019, 84, 3340.
doi: 10.1021/acs.joc.8b03208
Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642.
Kreft, A.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 2059.
doi: 10.1021/acs.orglett.8b00603
Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122.
doi: 10.1021/ja809873u
Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996.
doi: 10.1021/ol200395e
Christie, S. D. R.; Cummins, J.; Elsegood, M. R. J.; Dawson, G. Synlett 2009, 257.
Benfatti, F.; de Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386.
doi: 10.1021/ol203144v
Benfatti, F.; de Nanteuil, F.; Waser, J. Chem.-Eur. J. 2012, 18, 4844.
doi: 10.1002/chem.201103971
Haubenreisser, S.; Hensenne, P.; Schröder, S.; Niggemann. M. Org. Lett. 2013, 15, 2262.
doi: 10.1021/ol400809n
Rivero, A. R.; Fernandez, I.; Arellano, C. R. D.; Sierra, M. A. J. Org. Chem. 2014, 80, 1207.
Sabbatani, J.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 6780.
doi: 10.1002/anie.201601340
Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2010, 76, 229.
Yang, G.; Sun, Y.; Shen, Y.; Chai, Z.; Zhou, S.; Chu, J.; Chai, J. J. Org. Chem. 2013, 78, 5393.
Yang, G.; Wang, T.; Chai, J.; Chai, Z. Eur. J. Org. Chem. 2015, 1040.
Sanders, S. D.; Ruiz-Olalla, A.; Johnson, J. S. Chem. Commun. 2009, 34, 5135.
Shen, Y.; Chai, J.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2018, 83, 12549.
doi: 10.1021/acs.joc.8b01798
Xu, X.; Lu, H.; Ruppel, J. V.; Cui, X.; Lopea de Mesa, S.; Wojtas, L.; Zhang, X. J. Am. Chem. Soc. 2011, 133, 15292.
doi: 10.1021/ja2062506
Yang, P.; Shen Y.; Feng, M.; Yang, G.; Chai, Z. Eur. J. Org. Chem. 2018, 4103.
Shen, Y.; Yang, P.-F.; Yang, G.; Chen, W.-L.; Chai, Z. Org. Biomol. Chem. 2018, 16, 2688.
doi: 10.1039/C8OB00455B
Ma, X.; Tang, Q.; Ke, J.; Yang, X.; Zhang, J.; Shao, H. Org. Lett. 2013, 15, 5170.
doi: 10.1021/ol402192f
Ma, X.; Zhang, J.; Tang, Q.; Ke, J.; Zou, W.; Shao, H. Chem. Commun. 2014, 50, 3505.
doi: 10.1039/C3CC48963A
Zhu, W.; Ren, J.; Wang, Z. Eur. J. Org. Chem. 2014, 2014, 3561.
doi: 10.1002/ejoc.201402160
Ren, J.; B, J.; Ma, W.; Wang, Z. Synlett 2014, 25, 2260.
doi: 10.1055/s-0034-1378897
Zhang, J.; Xing, S.; Ren, J.; Jiang, S.; Wang, Z. Org. Lett. 2014, 17, 218.
Wang, Z.; Chen, S.; Ren, J.; Wang, Z. Org. Lett. 2015, 17, 4184.
doi: 10.1021/acs.orglett.5b01928
Wang, H.; Yang, W.; Liu, H.; Wang, W.; Li, H. Org. Biomol. Chem. 2012, 10, 5032.
doi: 10.1039/c2ob25682g
Goldberg, A. F. G.; O'Connor, N. R.; Craig II, R. A.; Stoltz, B. M. Org. Lett. 2012, 14, 5314.
doi: 10.1021/ol302494n
Sun, Y.; Yang, G.; Chai, Z.; Mu, X.; Chai, J. Org. Biomol. Chem. 2013, 11, 7859.
Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293.
Augustin, A. U.; Busse, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 820.
doi: 10.1021/acs.orglett.7b03961
Xie, M.-S.; Zhao, G.-F.; Qin, T.; Suo, Y.-B.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2019, 55, 1580.
doi: 10.1039/C8CC09595G
Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2014, 53, 5964.
doi: 10.1002/anie.201400885
Wang, Z.; Zhang, H.; Xu, P; Luo, Y. Chem. Commun. 2018, 54, 10128.
doi: 10.1039/C8CC04656E
Jiao, L.; Ye, S.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 7178.
doi: 10.1021/ja8008715
Jiao, L.; Lin, M.; Yu, Z.-X. Chem. Commun. 2010, 46, 1059.
doi: 10.1039/B922417C
Li, Q.; Jiang G.; Jiao, L.; Yu, Z.-X. Org. Lett. 2010, 12, 1332.
doi: 10.1021/ol100237h
Lin, M.; Kang, G.-Y.; Guo, Y.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2012, 134, 398.
doi: 10.1021/ja2082119
Luo, Z.; Zhou, B.; Li, Y. Org. Lett. 2012, 14, 2540.
doi: 10.1021/ol3008414
Zhang, H.; Jeon, K. O.; Hay, E.; Geib, S.; Curran, D.; LaPorte, M. Org. Lett. 2014, 16, 94.
doi: 10.1021/ol403078e
Chen, H.; Zhang, J.; Wang, D. Z. Org. Lett. 2015, 17, 2098.
doi: 10.1021/acs.orglett.5b00671
Goldberg, A. F. G.; Stoltz, B. M. Org. Lett. 2011, 13, 4474.
doi: 10.1021/ol2017615
Wei, F.; Ren, C.-L.; Wang, D.; Liu, L. Chem.-Eur. J. 2015, 21, 2335.
doi: 10.1002/chem.201405407
Li, W.-K.; Liu, Z.-S.; He, L.; Kang, T.-R.; Liu, Q.-Z. Asian. J. Org. Chem. 2015, 4, 28.
doi: 10.1002/ajoc.201402219
Trost, B. M.; Morris, P. J. Angew. Chem., Int. Ed. 2011, 50, 6167.
doi: 10.1002/anie.201101684
Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 2012, 134, 17823.
doi: 10.1021/ja309003x
Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2012, 31, 7591.
doi: 10.1021/om300896z
Xie, M.-S.; Wang, Y.; Li, J.-P.; Du, C.; Zhang, Y.-Y.; Hao, E.-J.; Zhang, M.-Z.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2015, 51, 12451.
doi: 10.1039/C5CC04832J
Ma, C.; Huang, Y.; Zhao, Y. ACS Catal. 2016, 6, 6408.
doi: 10.1021/acscatal.6b01845
Gee, Y. S.; Rivinoja, D. J.; Wales, S. M.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. J. Org. Chem. 2017, 82, 13517.
doi: 10.1021/acs.joc.7b02624
Ding, W.-P.; Zhang, G.-P.; Jiang, Y.-J.; Du, J.; Liu, X.-Y.; Chen, D.; Ding, C.-H.; Deng, Q.-H.; Hou, X.-L. Org. Lett. 2019, 21, 6805.
doi: 10.1021/acs.orglett.9b02431
Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067.
doi: 10.1002/anie.201106174
Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett 2014, 25, 2281.
doi: 10.1055/s-0034-1378371
Liu, Q.-S.; Wang, D.; Yang, Z.; Luan, Y.; Yang, J.; Li, J.; Pu, Y.; Ye, M. J. Am. Chem. Soc. 2017, 139, 18150.
Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048.
doi: 10.1021/ja300294a
Hao, W.; Harenberg, J. H.; Wu, X.; MacMillan, S. N.; Lin, S. J. Am. Chem. Soc. 2018, 140, 3514.
doi: 10.1021/jacs.7b13710
Yang, J.; Shen, Y.; Lim, Y. J.; Yoshikai, N. Chem. Sci. 2018, 9, 6928.
doi: 10.1039/C8SC02074D
Yang, J.; Sun, Q.; Yoshikai, N. ACS Catal. 2019, 9, 1973.
doi: 10.1021/acscatal.8b05114
Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.
doi: 10.1021/ol800819h
Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544.
doi: 10.1021/om400473p
Huang, X.-B.; Li, X.-J.; Li, T.-T.; Chen, B.; Chu, W.-D.; He, L.; Liu, Q.-Z. Org. Lett. 2019, 21, 1713.
doi: 10.1021/acs.orglett.9b00274
Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758.
doi: 10.1002/anie.201207801
Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.
doi: 10.1021/ol4005068
Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162.
doi: 10.1021/ja107849y
Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.
doi: 10.1021/jacs.6b01728
Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222.
doi: 10.1002/anie.201106162
Nguyen, T. H.; Maity, S.; Zheng, N. Beilstein J. Org. Chem. 2014, 10, 975.
doi: 10.3762/bjoc.10.96
Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. Synth. Catal. 2014, 356, 2831.
doi: 10.1002/adsc.201400742
Sasaki, M.; Kondo, Y.; Nishio, T.; Takeda, K. Org. Lett. 2016, 18, 3858.
doi: 10.1021/acs.orglett.6b01865
Blom, J.; Vidal-Albalat, A.; Jørgensen, J.; Barløse, C. L.; Jessen, K. S.; Iversen, M. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2017, 56, 11831.
doi: 10.1002/anie.201706150
Kamlar, M.; Franc, M.; Císařová, I.; Gyepes, R.; Veselý, J. Chem. Commun. 2019, 55, 3829.
doi: 10.1039/C8CC06500D
Pan, D.; Mou, C.; Zan, N.; Lv, Y.; Song, B.-A.; Chi, Y. R.; Jin, Z. Org. Lett. 2019, 21, 6624.
doi: 10.1021/acs.orglett.9b02088
Cui, B.; Ren, J.; Wang, Z. J. Org. Chem. 2014, 79, 790.
doi: 10.1021/jo402383a
Gladow, D.; Reissig, H.-U. J. Org. Chem. 2014, 79, 4492.
doi: 10.1021/jo500534t
Zaytsev, S. V.; Ivanov, K. L.; Skvortsov, D. A.; Bezzubov, S. I.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2018, 83, 8695.
doi: 10.1021/acs.joc.8b00922
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Zhanhui Yang , Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
Hong Zheng , Xin Peng , Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Shengyan Yang , Xiangzhen Meng , Xin Wang , Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060