Citation: Liu Wenzhu, Dou Lijuan, Mu Weihua. Recent Progress on[3+2] Ring-Expansion Reaction of Cyclopropane with Unsaturated Compounds[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1150-1176. doi: 10.6023/cjoc201910019 shu

Recent Progress on[3+2] Ring-Expansion Reaction of Cyclopropane with Unsaturated Compounds

  • Corresponding author: Mu Weihua, weihua_mu@ynnu.edu.cn
  • Received Date: 13 October 2019
    Revised Date: 23 December 2019
    Available Online: 15 January 2020

    Fund Project: the National Natural Science Foundation of China 21763033Project supported by the National Natural Science Foundation of China (Nos. 21763033, 21363028)the National Natural Science Foundation of China 21363028

Figures(51)

  • Due to its high ring strain, cyclopropanes can react with a variety of unsaturated compounds to construct five- membered carbo- and hetero-cycles through[3+2] ring-expansion reaction. These five-membered compounds are key skeletons of many drugs, natural products and bioactive molecules, and are also an important class of organic intermediates which have wide applications in medicine, agriculture, chemical engineering, organic synthesis and other related areas. Recently, more and more chemists have constructed a lot of complex five-membered carbo- and hetero-cycles by using cyclopropane as a three-carbon synthon, which has promoted the rapid development of focus area. This review summarizes the most recent [3+2] ring-expansion reaction of cyclopropanes with compounds containing unsaturated bonds such as olefins, aldehydes, ketones and nitriles in the past decade. Moreover, the prospects of future development are also discussed.
  • 加载中
    1. [1]

      Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.  doi: 10.1021/cr00091a005

    2. [2]

      Khoury, P. R.; Goddard, J. D.; Tam, W. Tetrahedron 2004, 60, 8103.  doi: 10.1016/j.tet.2004.06.100

    3. [3]

      Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.  doi: 10.1021/acs.chemrev.5b00138

    4. [4]

      Bach, R. D.; Dmitrenko, O. J. Org. Chem. 2002, 67, 2588.  doi: 10.1021/jo016241m

    5. [5]

      Wang, L.; Xu, J.-H. Chin. J. Org. Chem. 2003, 23, 750(in Chinese).
       

    6. [6]

      Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.  doi: 10.1016/j.tet.2004.10.077

    7. [7]

      Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.  doi: 10.1021/cr050988l

    8. [8]

      Yuan, M.-F.; Chen, Y.-L.; Ding, W.-Y.; Cao, W.-G. Chin. J. Org. Chem. 2003, 23, 901(in Chinese).
       

    9. [9]

      De Simone, F.; Waser, J. Synthesis 2009, 3353.
       

    10. [10]

      Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797.  doi: 10.1351/PAC-CON-09-09-28

    11. [11]

      Mel'nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendeleev Commun. 2011, 21, 293.  doi: 10.1016/j.mencom.2011.11.001

    12. [12]

      Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.  doi: 10.1039/C3CS60238A

    13. [13]

      De Nanteuil, F.; de Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912.  doi: 10.1039/C4CC03194F

    14. [14]

      Pandey, A. K.; Ghosh, A.; Banerjee, P. Isr. J. Chem. 2016, 56, 512.  doi: 10.1002/ijch.201500100

    15. [15]

      Pagenkopf, B. L.; Vemula, N. Eur. J. Org. Chem. 2017, 2017, 2561.  doi: 10.1002/ejoc.201700201

    16. [16]

      Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655.  doi: 10.1039/C4OB02117G

    17. [17]

      Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504.  doi: 10.1002/anie.201309886

    18. [18]

      Rassadin, V. A.; Six, Y. Tetrahedron 2016, 72, 4701.  doi: 10.1016/j.tet.2016.06.014

    19. [19]

      Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493.  doi: 10.1021/cr078376j

    20. [20]

      Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.  doi: 10.1021/cr010016n

    21. [21]

      Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.  doi: 10.1039/b901245c

    22. [22]

      De Simone, F.; Waser, J. Synlett 2011, 589.
       

    23. [23]

      Tang, P.; Qin, Y. Synthesis 2012, 44, 2969.  doi: 10.1055/s-0032-1317011

    24. [24]

      Wang, Z. Synlett 2012, 23, 2311.  doi: 10.1055/s-0032-1317082

    25. [25]

      Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.  doi: 10.1021/ar800104y

    26. [26]

      Wang, L.; Zhou, J.; Tang, Y. Chin. J. Chem. 2018, 36, 1123.  doi: 10.1002/cjoc.201800373

    27. [27]

      Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 6659.  doi: 10.1016/j.tetlet.2008.09.028

    28. [28]

      De Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 12075.  doi: 10.1002/anie.201106255

    29. [29]

      De Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. J. Am. Chem. Soc. 2014, 136, 6239.  doi: 10.1021/ja5024578

    30. [30]

      Waser, J.; Serrano, E.; de Nanteuil, F. Synlett 2014, 25, 2285.  doi: 10.1055/s-0034-1378512

    31. [31]

      Racine, S.; de Nanteuil, F.; Serrano, E.; Waser, J. Angew. Chem., Int. Ed. 2014, 53, 8484.  doi: 10.1002/anie.201404832

    32. [32]

      Mackay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626.  doi: 10.1021/ol500256n

    33. [33]

      Verma, K.; Banerjee, P. Adv. Synth. Catal. 2016, 358, 2053.  doi: 10.1002/adsc.201600221

    34. [34]

      Dey, R.; Banerjee, P. Org. Lett. 2017, 19, 304.  doi: 10.1021/acs.orglett.6b03276

    35. [35]

      Verma, K.; Banerjee, P. Adv. Synth. Catal. 2017, 359, 3848.  doi: 10.1002/adsc.201700744

    36. [36]

      Volkova, Y. A.; Budynina, E. M.; Kaplun, A. E.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Rybakov, V. B.; Trushkov, I. V.; Melnikov, M. Y. Chem.-Eur. J. 2013, 19, 6586.  doi: 10.1002/chem.201300731

    37. [37]

      Chagarovskiy, A. O.; Budynina, E. M.; Ivanova, O. A.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Tetrahedron 2009, 65, 5385.  doi: 10.1016/j.tet.2009.04.061

    38. [38]

      Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Grishin, Y. K.; Trushkov, I. V.; Melnikov, M. Y. J. Org. Chem. 2015, 80, 12212.  doi: 10.1021/acs.joc.5b02146

    39. [39]

      Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851.  doi: 10.1021/ja4042127

    40. [40]

      Yan, W.; Wang, P.; Wang, L.; Sun, X.; Tang, Y. Acta Chim. Sinica 2017, 75, 783(in Chinese).

    41. [41]

      Kaicharla, T.; Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Angew. Chem., Int. Ed. 2016, 55, 10061.  doi: 10.1002/anie.201604373

    42. [42]

      Pandey, A. K.; Varshnaya, R. K.; Banerjee, P. Eur. J. Org. Chem. 2017, 2017, 1647.  doi: 10.1002/ejoc.201601549

    43. [43]

      Xia, X.-F.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. Asian J. 2012, 7, 1538.  doi: 10.1002/asia.201200104

    44. [44]

      Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032.  doi: 10.1002/anie.201206484

    45. [45]

      Wang, Z.; Ren, J.; Wang, Z. Org. Lett. 2013, 15, 5682.  doi: 10.1021/ol402662j

    46. [46]

      Thangamani, M.; Srinivasan, K. J. Org. Chem. 2018, 83, 571.  doi: 10.1021/acs.joc.7b02335

    47. [47]

      Zhu, J.; Liang, Y.; Wang, L.; Zheng, Z.-B.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900.  doi: 10.1021/ja503117q

    48. [48]

      Mukherjee, P.; Das, A. R. J. Org. Chem. 2017, 82, 2794.  doi: 10.1021/acs.joc.7b00089

    49. [49]

      Jackson, S. T.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196.

    50. [50]

      Curiel Tejeda, J. E.; Irwin, L. C.; Kerr, M. A. Org. Lett. 2016, 18, 4738.  doi: 10.1021/acs.orglett.6b02409

    51. [51]

      Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688.  doi: 10.1021/ja1032277

    52. [52]

      Alajarin, M.; Egea, A.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2016, 14, 10275.  doi: 10.1039/C6OB02005D

    53. [53]

      Feng, M.; Yang, P.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2017, 83, 174.

    54. [54]

      Tsunoi, S.; Maruoka, Y.; Suzuki, I.; Shibata, I. Org. Lett. 2016, 47, 4010.
       

    55. [55]

      Preindl, J.; Chakrabarty, S.; Waser, J. Chem. Sci. 2017, 8, 7112.  doi: 10.1039/C7SC03197A

    56. [56]

      Zhang, M.-C.; Wang, D.-C.; Xie, M.-S.; Qu, H.-M.; Guo, H.-M.; You, S.-L. Chem. 2019, 5, 156.  doi: 10.1016/j.chempr.2018.10.003

    57. [57]

      Hao, E.-J.; Fu, D.-D.; Wang, D.-C, Zhang, T.; Qu, G.-R.; Li, G.-X.; Lan, Y.; Guo, H.-M. Org. Chem. Front. 2019, 6, 863.  doi: 10.1039/C9QO00039A

    58. [58]

      Akaev, A. A.; Bezzubov, S. I.; Desyatkin, V. G.; Vorobyeva, N. S.; Majouga, A. G.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2019, 84, 3340.  doi: 10.1021/acs.joc.8b03208

    59. [59]

      Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642.
       

    60. [60]

      Kreft, A.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 2059.  doi: 10.1021/acs.orglett.8b00603

    61. [61]

      Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122.  doi: 10.1021/ja809873u

    62. [62]

      Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996.  doi: 10.1021/ol200395e

    63. [63]

      Christie, S. D. R.; Cummins, J.; Elsegood, M. R. J.; Dawson, G. Synlett 2009, 257.
       

    64. [64]

      Benfatti, F.; de Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386.  doi: 10.1021/ol203144v

    65. [65]

      Benfatti, F.; de Nanteuil, F.; Waser, J. Chem.-Eur. J. 2012, 18, 4844.  doi: 10.1002/chem.201103971

    66. [66]

      Haubenreisser, S.; Hensenne, P.; Schröder, S.; Niggemann. M. Org. Lett. 2013, 15, 2262.  doi: 10.1021/ol400809n

    67. [67]

      Rivero, A. R.; Fernandez, I.; Arellano, C. R. D.; Sierra, M. A. J. Org. Chem. 2014, 80, 1207.

    68. [68]

      Sabbatani, J.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 6780.  doi: 10.1002/anie.201601340

    69. [69]

      Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2010, 76, 229.

    70. [70]

      Yang, G.; Sun, Y.; Shen, Y.; Chai, Z.; Zhou, S.; Chu, J.; Chai, J. J. Org. Chem. 2013, 78, 5393.

    71. [71]

      Yang, G.; Wang, T.; Chai, J.; Chai, Z. Eur. J. Org. Chem. 2015, 1040.
       

    72. [72]

      Sanders, S. D.; Ruiz-Olalla, A.; Johnson, J. S. Chem. Commun. 2009, 34, 5135.
       

    73. [73]

      Shen, Y.; Chai, J.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2018, 83, 12549.  doi: 10.1021/acs.joc.8b01798

    74. [74]

      Xu, X.; Lu, H.; Ruppel, J. V.; Cui, X.; Lopea de Mesa, S.; Wojtas, L.; Zhang, X. J. Am. Chem. Soc. 2011, 133, 15292.  doi: 10.1021/ja2062506

    75. [75]

      Yang, P.; Shen Y.; Feng, M.; Yang, G.; Chai, Z. Eur. J. Org. Chem. 2018, 4103.
       

    76. [76]

      Shen, Y.; Yang, P.-F.; Yang, G.; Chen, W.-L.; Chai, Z. Org. Biomol. Chem. 2018, 16, 2688.  doi: 10.1039/C8OB00455B

    77. [77]

      Ma, X.; Tang, Q.; Ke, J.; Yang, X.; Zhang, J.; Shao, H. Org. Lett. 2013, 15, 5170.  doi: 10.1021/ol402192f

    78. [78]

      Ma, X.; Zhang, J.; Tang, Q.; Ke, J.; Zou, W.; Shao, H. Chem. Commun. 2014, 50, 3505.  doi: 10.1039/C3CC48963A

    79. [79]

      Zhu, W.; Ren, J.; Wang, Z. Eur. J. Org. Chem. 2014, 2014, 3561.  doi: 10.1002/ejoc.201402160

    80. [80]

      Ren, J.; B, J.; Ma, W.; Wang, Z. Synlett 2014, 25, 2260.  doi: 10.1055/s-0034-1378897

    81. [81]

      Zhang, J.; Xing, S.; Ren, J.; Jiang, S.; Wang, Z. Org. Lett. 2014, 17, 218.

    82. [82]

      Wang, Z.; Chen, S.; Ren, J.; Wang, Z. Org. Lett. 2015, 17, 4184.  doi: 10.1021/acs.orglett.5b01928

    83. [83]

      Wang, H.; Yang, W.; Liu, H.; Wang, W.; Li, H. Org. Biomol. Chem. 2012, 10, 5032.  doi: 10.1039/c2ob25682g

    84. [84]

      Goldberg, A. F. G.; O'Connor, N. R.; Craig II, R. A.; Stoltz, B. M. Org. Lett. 2012, 14, 5314.  doi: 10.1021/ol302494n

    85. [85]

      Sun, Y.; Yang, G.; Chai, Z.; Mu, X.; Chai, J. Org. Biomol. Chem. 2013, 11, 7859.
       

    86. [86]

      Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293.
       

    87. [87]

      Augustin, A. U.; Busse, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2018, 20, 820.  doi: 10.1021/acs.orglett.7b03961

    88. [88]

      Xie, M.-S.; Zhao, G.-F.; Qin, T.; Suo, Y.-B.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2019, 55, 1580.  doi: 10.1039/C8CC09595G

    89. [89]

      Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2014, 53, 5964.  doi: 10.1002/anie.201400885

    90. [90]

      Wang, Z.; Zhang, H.; Xu, P; Luo, Y. Chem. Commun. 2018, 54, 10128.  doi: 10.1039/C8CC04656E

    91. [91]

      Jiao, L.; Ye, S.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 7178.  doi: 10.1021/ja8008715

    92. [92]

      Jiao, L.; Lin, M.; Yu, Z.-X. Chem. Commun. 2010, 46, 1059.  doi: 10.1039/B922417C

    93. [93]

      Li, Q.; Jiang G.; Jiao, L.; Yu, Z.-X. Org. Lett. 2010, 12, 1332.  doi: 10.1021/ol100237h

    94. [94]

      Lin, M.; Kang, G.-Y.; Guo, Y.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2012, 134, 398.  doi: 10.1021/ja2082119

    95. [95]

      Luo, Z.; Zhou, B.; Li, Y. Org. Lett. 2012, 14, 2540.  doi: 10.1021/ol3008414

    96. [96]

      Zhang, H.; Jeon, K. O.; Hay, E.; Geib, S.; Curran, D.; LaPorte, M. Org. Lett. 2014, 16, 94.  doi: 10.1021/ol403078e

    97. [97]

      Chen, H.; Zhang, J.; Wang, D. Z. Org. Lett. 2015, 17, 2098.  doi: 10.1021/acs.orglett.5b00671

    98. [98]

      Goldberg, A. F. G.; Stoltz, B. M. Org. Lett. 2011, 13, 4474.  doi: 10.1021/ol2017615

    99. [99]

      Wei, F.; Ren, C.-L.; Wang, D.; Liu, L. Chem.-Eur. J. 2015, 21, 2335.  doi: 10.1002/chem.201405407

    100. [100]

      Li, W.-K.; Liu, Z.-S.; He, L.; Kang, T.-R.; Liu, Q.-Z. Asian. J. Org. Chem. 2015, 4, 28.  doi: 10.1002/ajoc.201402219

    101. [101]

      Trost, B. M.; Morris, P. J. Angew. Chem., Int. Ed. 2011, 50, 6167.  doi: 10.1002/anie.201101684

    102. [102]

      Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 2012, 134, 17823.  doi: 10.1021/ja309003x

    103. [103]

      Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2012, 31, 7591.  doi: 10.1021/om300896z

    104. [104]

      Xie, M.-S.; Wang, Y.; Li, J.-P.; Du, C.; Zhang, Y.-Y.; Hao, E.-J.; Zhang, M.-Z.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2015, 51, 12451.  doi: 10.1039/C5CC04832J

    105. [105]

      Ma, C.; Huang, Y.; Zhao, Y. ACS Catal. 2016, 6, 6408.  doi: 10.1021/acscatal.6b01845

    106. [106]

      Gee, Y. S.; Rivinoja, D. J.; Wales, S. M.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. J. Org. Chem. 2017, 82, 13517.  doi: 10.1021/acs.joc.7b02624

    107. [107]

      Ding, W.-P.; Zhang, G.-P.; Jiang, Y.-J.; Du, J.; Liu, X.-Y.; Chen, D.; Ding, C.-H.; Deng, Q.-H.; Hou, X.-L. Org. Lett. 2019, 21, 6805.  doi: 10.1021/acs.orglett.9b02431

    108. [108]

      Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067.  doi: 10.1002/anie.201106174

    109. [109]

      Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett 2014, 25, 2281.  doi: 10.1055/s-0034-1378371

    110. [110]

      Liu, Q.-S.; Wang, D.; Yang, Z.; Luan, Y.; Yang, J.; Li, J.; Pu, Y.; Ye, M. J. Am. Chem. Soc. 2017, 139, 18150.
       

    111. [111]

      Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048.  doi: 10.1021/ja300294a

    112. [112]

      Hao, W.; Harenberg, J. H.; Wu, X.; MacMillan, S. N.; Lin, S. J. Am. Chem. Soc. 2018, 140, 3514.  doi: 10.1021/jacs.7b13710

    113. [113]

      Yang, J.; Shen, Y.; Lim, Y. J.; Yoshikai, N. Chem. Sci. 2018, 9, 6928.  doi: 10.1039/C8SC02074D

    114. [114]

      Yang, J.; Sun, Q.; Yoshikai, N. ACS Catal. 2019, 9, 1973.  doi: 10.1021/acscatal.8b05114

    115. [115]

      Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.  doi: 10.1021/ol800819h

    116. [116]

      Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544.  doi: 10.1021/om400473p

    117. [117]

      Huang, X.-B.; Li, X.-J.; Li, T.-T.; Chen, B.; Chu, W.-D.; He, L.; Liu, Q.-Z. Org. Lett. 2019, 21, 1713.  doi: 10.1021/acs.orglett.9b00274

    118. [118]

      Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758.  doi: 10.1002/anie.201207801

    119. [119]

      Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.  doi: 10.1021/ol4005068

    120. [120]

      Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162.  doi: 10.1021/ja107849y

    121. [121]

      Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.  doi: 10.1021/jacs.6b01728

    122. [122]

      Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222.  doi: 10.1002/anie.201106162

    123. [123]

      Nguyen, T. H.; Maity, S.; Zheng, N. Beilstein J. Org. Chem. 2014, 10, 975.  doi: 10.3762/bjoc.10.96

    124. [124]

      Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. Synth. Catal. 2014, 356, 2831.  doi: 10.1002/adsc.201400742

    125. [125]

      Sasaki, M.; Kondo, Y.; Nishio, T.; Takeda, K. Org. Lett. 2016, 18, 3858.  doi: 10.1021/acs.orglett.6b01865

    126. [126]

      Blom, J.; Vidal-Albalat, A.; Jørgensen, J.; Barløse, C. L.; Jessen, K. S.; Iversen, M. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2017, 56, 11831.  doi: 10.1002/anie.201706150

    127. [127]

      Kamlar, M.; Franc, M.; Císařová, I.; Gyepes, R.; Veselý, J. Chem. Commun. 2019, 55, 3829.  doi: 10.1039/C8CC06500D

    128. [128]

      Pan, D.; Mou, C.; Zan, N.; Lv, Y.; Song, B.-A.; Chi, Y. R.; Jin, Z. Org. Lett. 2019, 21, 6624.  doi: 10.1021/acs.orglett.9b02088

    129. [129]

      Cui, B.; Ren, J.; Wang, Z. J. Org. Chem. 2014, 79, 790.  doi: 10.1021/jo402383a

    130. [130]

      Gladow, D.; Reissig, H.-U. J. Org. Chem. 2014, 79, 4492.  doi: 10.1021/jo500534t

    131. [131]

      Zaytsev, S. V.; Ivanov, K. L.; Skvortsov, D. A.; Bezzubov, S. I.; Melnikov, M. Y.; Budynina, E. M. J. Org. Chem. 2018, 83, 8695.  doi: 10.1021/acs.joc.8b00922

  • 加载中
    1. [1]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    5. [5]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    6. [6]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    7. [7]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    8. [8]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    15. [15]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

Metrics
  • PDF Downloads(48)
  • Abstract views(3506)
  • HTML views(799)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return