Citation: Ding Bangdong, Jiang Yechao, Zhang Yu, Ye Rong, Sun Jin, Yan Chaoguo. Synthesis of Indanone-Containing Heterocycles via Cycloaddition Reaction of Quinolinium Ylides with 1, 3-Indanedione and 2-Arylidene-1, 3-indanediones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 1003-1016. doi: 10.6023/cjoc201910016 shu

Synthesis of Indanone-Containing Heterocycles via Cycloaddition Reaction of Quinolinium Ylides with 1, 3-Indanedione and 2-Arylidene-1, 3-indanediones

  • Corresponding author: Yan Chaoguo, cgyan@yzu.edu.cn
  • Received Date: 12 October 2019
    Revised Date: 13 November 2019
    Available Online: 2 December 2019

    Fund Project: the National Natural Science Foundation of China 21572196Project supported by the National Natural Science Foundation of China (No. 21572196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(7)

  • The triethylamine promoted cycloaddition reaction of N-phenacylquinolinium bromide with 1, 3-indanedione gave functionalized dihydropyrrolo[1, 2-a]quinolines as main products and 2-(1-(2-oxo-2-phenylethyl)-quinolin-4-ylidene)-indene-1, 3-diones as minor products. The similar reaction with N-benzylquinolinium bromide gave 2-(1-(2-oxo-2-phenylethyl)-quino-lin-4-ylidene)-indene-1, 3-diones as major products. On the other hand, triethylamine promoted three-component reaction of N-phenacyl, N-ethoxycarbonylmethyl and N-(4-nitrobenzyl)quinolinium salts, aromatic aldehydes and 1, 3-indanedione in ethanol at room temperature afforded functionalized spiro[indene-2, 3'-pyrrolo[1, 2-a]quinolone]s in good yields and with high diastereoselectivity.
  • 加载中
    1. [1]

      (a) Addla, D.; Bhima; Sridhar, B.; Devi, A.; Kantevari, S. Bioorg. Med. Chem. Lett. 2012, 22, 7475.
      (b) Chakrabarty, S.; Croft, M. S.; Marko, M. G.; Moyna, G. Bioorg. Med. Chem. 2013, 21, 1143/
      (c) Muscia, G. C.; Buldain, G. Y.; Asis, S. E. Eur. J. Med. Chem. 2014, 73, 243.

    2. [2]

      (a) Huang, H.-H.; Prabhakar, Ch.; Tang, K.-C.; Chou, P. T.; Huang, G. J.; Yang, J. S. J. Am. Chem. Soc. 2011, 133, 8028.
      (b) Gomez-Esteban, S.; Benito-Hernandez, A.; Termine, R.; Hennrich, G.; Navarrete, J. T. L.; Ruiz Delgado, M. C.; Golemme, A.; Gomez-Lor, B. Chem.-Eur. J. 2018, 24, 3576.
      (c) Sanguinet, L.; Williams, J. C.; Yang, Z. Y.; Twieg, R. J.; Mao, G. L.; Singer, K. D.; Wiggers, G.; Petschek, R. G. Chem. Mater. 2006, 18, 425.

    3. [3]

      (a) Mondal, A.; Mukhopadhyay, C. ACS Comb. Sci. 2015, 17, 404.
      (b) Mondal, A.; Banerjee, B.; Bhaumik, A.; Mukhopadhyay, C. ChemCatChem 2016, 8, 1185.
      (c) Xu, H.; Chen, K.; Liu, H. W.; Wang, G. W. Org. Chem. Front. 2018, 5, 2864.
      (d) Hussein, E. M.; Moussa, Z.; Ahmed, S. A. Monatsh. Chem. 2018, 149, 2021.

    4. [4]

      (a) Zhou, Y. J.; Chen, D. S.; Li, Y. L.; Liu, Y.; Wang, X. S. ACS Comb. Sci. 2013, 15, 498.
      (b) Chen, M.; Sun, N.; Liu, Y. H. Org. Lett. 2013, 15, 5574.
      (c) Allais, C.; Lieby-Muller, F.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
      (d) Marquise, N.; Dorcet, V.; Chevallier, F.; Mongin, F. Org. Biomol. Chem. 2014, 12, 8138.

    5. [5]

      (a) Mei, G. J.; Shi, F.; Chem. Commun. 2018, 54, 6607.
      (b) Mei, G. J.; Li, D.; Zhou, G. X.; Shi, F.; Cao, Z. Chem. Commun. 2017, 53, 10030.
      (c) Wu, J. L.; Du, B. X.; Zhang, Y. C.; He, Y. Y.; Wang, J. Y.; Wu, P.; Shi, F. Adv. Synth. Catal. 2016, 358, 2777.
      (d) Zhu, Q. N.; Zhang, Y. C.; Xu, M. M.; Sun, X. X.; Yang, X.; Shi, F. J. Org. Chem. 2016, 81, 7898.
      (e) Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 12104.
      (f) Abbaraju, S.; Ramireddy, N.; Rana, N. K.; Arman, H. J.; Zhao, C. G. Adv. Synth. Catal. 2015, 357, 2633.

    6. [6]

      (a) Abdukader, A.; Zhang, Y. H.; Zhang, Z. P.; Liu, C. J. Chin. J. Org. Chem. 2016, 36, 875 (in Chinese).
      (阿布力米提·阿布都卡德尔, 张永红, 张增鹏, 刘晨江, 有机化学, 2016, 36, 875.)
      (b) Tian, W. Y.; Xu, S.; Liang, Z. W.; Sun, D. L.; Zhang, R. H. Chin. J. Org. Chem. 2016, 36, 2121 (in Chinese).
      (田文艳, 徐松, 梁中卫, 孙德立, 张荣华, 有机化学, 2016, 36, 2121.)
      (c) Hao, E. J.; Jiang, X. H.; Fu, D. D.; Wang, D. C.; Xie, M. S.; Qu, G. R.; Guo, H. M. Chin. J. Org. Chem. 2016, 36, 2746 (in Chinese).
      (郝二军, 蒋小涵, 付丹丹, 王东超, 谢明胜, 渠桂荣, 郭海明, 有机化学, 2016, 36, 2746.)
      (d) Tian, K.; Meng, J.; Gan, Y. Y.; Li, X. Q.; Wu, S. Q.; Chen, J.; Li, W.; Qi, Y. Y.; Hu, W. N.; Wang, Z. C.; Ouyang G. P. Chin. J. Org. Chem. 2018, 38, 2657 (in Chinese).
      (田坤, 孟娇, 甘宜远, 李小琴, 巫受群, 陈洁, 李文, 漆亚云, 胡伟男, 王贞超, 欧阳贵平, 有机化学, 2018, 38, 2657.)

    7. [7]

      (a) Tugrak, M.; Inci Gul, H.; Sakagami, H.; Gulcin, I.; Supuran, C. T. Bioorg. Chem. 2018, 81, 433.
      (b) Jangra, H.; Chen, Q.; Fuks, E.; Zenz, I.; Mayer, P.; Ofial, A. R.; Zipse, H.; Mayr, H. J. Am. Chem. Soc. 2018, 140, 16758.
      (c) Chen, Y. R.; Ganapuram, M. R.; Hsieh, K. H.; Chen, K. H.; Karanam, P.; Vagh, S. S.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2018, 54, 12702.
      (d) Xu, H.; Sha, F.; Li, Q.; Wu, X. Y. Org. Biomol. Chem. 2018, 16, 7214.

    8. [8]

      (a) Wang, X. H.; Yan, C.-G. Synthesis 2014, 46, 1059.
      (b) Shi, Y. G.; Wang, X. H.; Liu, R. Z.; C. G. Yan, Chem. Commun. 2016, 52, 6280.
      (c) Zhang, Y. Y.; Han, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 7382.
      (d) Cao, J.; Sun, J. Yan, C. G. Org. Biomol. Chem. 2018, 16, 4170.
      (e) Sun, J.; Zhang, Y.; Shi, R. G.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 3978.
      (f) Liu, D.; Sun, J.; Zhang, Y.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 8008.
      (g) Yang, W. J.; Fang, H. L.; Sun, J. Yan, C. G. ACS Omega 2019, 4, 13553.
      (h) Huang, Y.; Fang, H. L.; Huang, Y. X.; Sun, J.; Yan, C. G. J. Org. Chem. 2019, 84, 1912437.

    9. [9]

      (a) Kröhnke, F.; Zecher, W. Angew. Chem., Int. Ed. 1962, 1, 626.
      (b) Kröhnke, F. Angew. Chem., Int. Ed. 1963, 2, 225.
      (c) Jacobs, J.; Van Hende, E.; Claessens, S.; De Kimpe, N. Curr. Org. Chem. 2011, 15, 1340.
      (d) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.

    10. [10]

      (a) Constable, E. C.; Edwards, A. J.; Martínez-Máńez, R.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1995, 3253.
      (b) Eryazici, I.; Moorefield, C. N.; Durmus, S.; Newkone, G. R. J. Org. Chem. 2006, 71, 1009.
      (c) Tu, S. J.; Jia, R. H.; Jiang, B.; Zhang, J. Y.; Zhang, Y.; Yao, C. S.; Ji, S. J. Tetrahedron 2007, 63, 381.

    11. [11]

      (a) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5, 435.
      (b) Sasaki, T.; Kanematsu, K.; Yukimoto, Y.; Ochiai, S. J. Org. Chem. 1971, 36, 813.
      (c) Xia, Z. Q.; Przewloka, T.; Koya, K.; Ono, M.; Chen, S. J.; Sun, L. J. Tetrahedron Lett. 2006, 47, 8817.

    12. [12]

      (a) Dinica, R. M.; Druta, I. I.; Pettinari, C. Synlett 2000, 1013.
      (b) Furdui, B.; Dinica, R.; Druta, I. I.; Demeunynck, M. Synthesis 2006, 2640.

    13. [13]

      (a) Zhang, X. C.; Huang, W. Y. Synthesis 1999, 1, 51.
      (b) Wu, K.; Chen, Q. Y. Synthesis 2003, 35.
      (c) Chuang, C. P.; Tsai, A. I. Synthesis 2006, 675.

    14. [14]

      (a) Ruano, J. L. G.; Fraile, A.; Martín, M. R.; González, G.; Fajardo, C.; Martín-Castro, A. M. J. Org. Chem. 2011, 76, 3296.
      (b) Khlebnikov, A. F.; Golovkina, M. V.; Novikov, M. S.; Yufit, D. S. Org. Lett. 2012, 14, 3768.
      (c) Brioche, J.; Meyer, C.; Cossy, J. Org. Lett. 2015, 17, 2800.

    15. [15]

      (a) Liu, Y.; Sun, J. W. J. Org. Chem. 2012, 77, 1191.
      (b) Osyanin, V. A.; Osipov, D. V.; Klimochkin, Y. N. J. Org. Chem. 2013, 78, 5505.
      (c) Wang, F. Y.; Shen, Y. M.; Hu, H. Y.; Wang, X. S.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 9556.

    16. [16]

      (a) Allgäuer, D. S.; Mayer, P.; Mayr, H. J. Am. Chem. Soc. 2013, 135, 15216.
      (b) Allgäuer, D. S.; Mayr, H. Eur. J. Org. Chem. 2013, 6379.
      (c) Allgäuer, D. S.; Mayr, H. Eur. J. Org. Chem. 2014, 2956.
      (d) Hopf, H.; Jones, P. G.; Nicolescu, A.; Bicu, E.; Birsa, L. M.; Belei, D. Chem.-Eur. J. 2014, 20, 5565.

    17. [17]

      (a) Yan, C. G.; Cai, X. M.; Wang, Q. F.; Wang, T. Y.; Zheng, M. Org. Biomol. Chem. 2007, 5, 945.
      (b) Yan, C. G.; Song, X. K.; Wang, Q. F.; Sun, J. Siemeling, U.; Bruhn, C. Chem. Commun. 2008, 1440.
      (c) Wang, Q. F.; Song, X. K.; Chen, J.; Yan, C. G. J. Comb. Chem. 2009, 11, 1007.
      (d) Wang, Q. F.; Hou, H.; Hui, L.; Yan, C. G. J. Org. Chem. 2009, 74, 7403.
      (e) Yan, C. G.; Wang, Q. F.; Song, X. K.; Sun, J. J. Org. Chem. 2009, 74, 710.
      (f) Wang, Q. F.; Hui, L.; Hou, H.; Yan, C. G. J. Comb. Chem. 2010, 12, 260.
      (g) Han, Y.; Chen, J.; Hui, L.; Yan, C. G. Tetrahedron 2010, 66, 7743.

    18. [18]

      (a) Hou, H.; Zhang, Y.; Yan, C. G. Chem. Commun. 2012, 48, 4492.
      (b) Hui, L.; Li, H. Y.; Yan, C. G. Eur. J. Org. Chem. 2012, 3157.
      (c) Wu, L.; Sun, J.; Yan. C. G. Org. Biomol. Chem. 2012, 10, 9452.
      (d) Shen, G. L.; Sun, J.; Yan, C. G. Org. Biomol. Chem., 2015, 13, 10929.
      (e) Shen, G. L.; Sun, J.; Yan, C. G. RSC Adv. 2015, 5, 4475.
      (f) Liu, L. Z.; Wang, X. Y.; Sun, J.; Yan, C. G. Tetrahedron Lett. 2015, 56, 6711.

    19. [19]

      (a) Banothu, J.; Basavoju, S.; Bavantula, R. J. Heterocycl. Chem. 2015, 52, 853.
      (b) Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.

    20. [20]

      (a) Shen, G. L.; Sun, J.; Yan, C. G. Chin. J. Chem. 2016, 34, 412.
      (b) Liu, R. Z.; Shi, R. G.; Sun, J.; Yan, C. G. Org. Chem. Front. 2017, 4, 354.
      (c) Shi, R. G.; Sun, J.; Yan, C. G. ACS Omega 2017, 2, 7820.

    21. [21]

      (a) Fujita, R.; Hoshino, M.; Tojyo, Y.; Kimura, A.; Hongo, H. Yakugaku Zasshi 2006, 126, 99.
      (b) Fujita, R.; Watanabe, N.; Tomisawa, H. Heterocycles 2001, 55, 435.
      (c) Fujita, R.; Hoshino, M.; Tomisawa, H. Chem. Pharm. Bull. 2006, 54, 334.

  • 加载中
    1. [1]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    2. [2]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    3. [3]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    4. [4]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    5. [5]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    6. [6]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    9. [9]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    10. [10]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    11. [11]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    12. [12]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    13. [13]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    18. [18]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    19. [19]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(14)
  • Abstract views(1350)
  • HTML views(229)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return