Citation: Bao Kun, Wei Jun, Sheng Rong. Synthesis of α, α, γ, γ-Tetrafluoro-β-hydroxy Ketones and α-Fluoroacetophenones via 1, 3-Diaryl-1, 3-diketones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 930-937. doi: 10.6023/cjoc201910014 shu

Synthesis of α, α, γ, γ-Tetrafluoro-β-hydroxy Ketones and α-Fluoroacetophenones via 1, 3-Diaryl-1, 3-diketones

  • Corresponding author: Sheng Rong, shengr@zju.edu.cn
  • Received Date: 11 October 2019
    Revised Date: 7 December 2019
    Available Online: 27 December 2019

Figures(6)

  • α, α, γ, γ-Tetrafluoro-β-hydroxy ketones and α-fluoroacetophenones are widely used in the fields of organic chemistry, agrochemicals, and pharmaceuticals. A mild and excellent method to synthesize α, α, γ, γ-tetrafluoro-β-hydroxy ketones and α-fluoroacetophenones via various 1, 3-diaryl-1, 3-diketones has been developed. With the modification of reaction conditions, two different products could be obtained in moderate to good yields, respectively.
  • 加载中
    1. [1]

      (a) Fujiwara, T.; O'Hagan D. J. Fluorine Chem. 2014, 167, 16.
      (b) Ghosh, K.-G.; Chandu, P.; Mondal, S.; Sureshkumar, D. Tetrahedron 2019, 75, 4471.
      (c) Wei, J.; Gu, D.-Y.; Wang, S.-D.; Hu, J.-B.; Dong, X.-W.; Sheng, R. Org. Chem. Front. 2018, 5, 2568.
      (d) Cloutier, M.; Roudias, M.; Paquin, J.-F. Org. Lett. 2019, 21, 3866.

    2. [2]

      (a) Gillis, E.-P.; Eastman, K.-J.; Hill, M.-D.; Donnelly, D.-J.; Meanwell, N.-A. J. Med. Chem. 2015, 58, 8315.
      (b) Vogt, D.-B.; Seath, C.-P.; Wang, H.; Jui, N.-T. J. Am. Chem. Soc. 2019, 141, 13203.
      (c) Guan, Z.-P.; Wang, H.-M.; Huang, Y.-G.; Wang, Y.-K.; Wang, S.-C.; Lei, A.-W. Org. Lett. 2019, 21, 4619.

    3. [3]

      St-Gelais, J.; Bouchard, M.; Denavit, V.; Giguere, D. J. Org. Chem. 2019, 84, 8509.  doi: 10.1021/acs.joc.9b00795

    4. [4]

    5. [5]

      (a) D'Errico, S.; Oliviero, G.; Borbone, N.; Amato, J.; D'Alonzo, D.; Piccialli, V.; Mayol, L.; Piccialli, G. Molecules 2012, 17, 13036.
      (b) D'Errico, S.; Oliviero, G.; Piccialli, V.; Amato, J.; Borbone, N.; D'Atri, V.; D'Alessio, F.; Di Noto, R.; Ruffo, F.; Salvatore, F.; Piccialli, G. Bioorg. Med. Chem. Lett. 2011, 21, 5835.
      (c) Naveen, N.; Balamurugan, R. Org. Biomol. Chem. 2017, 15, 2063.

    6. [6]

      (a) Yang, Q.; Mao, L.-L.; Yang, B.; Yang, S.-D. Org. Lett. 2014, 16, 3460.
      (b) Purser, S.; Moore, P.-R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (c) Zhang, P.; Wolf, C. J. Org. Chem. 2012, 77, 8840.

    7. [7]

      (a) He, Z.; Qi, X.-T.; She, Z.-J.; Zhao, Y.-S.; Li, S.-Q.; Tang, J.-B.; Gao, G.; Lan, Y.; You, J.-S. J. Org. Chem. 2017, 82, 1403.
      (b) Bartlett, S.-L.; Beaudry, C.-M. J. Org. Chem. 2011, 76, 9852.

    8. [8]

      Kuang, J.-Q.; Zhou, T.; You, T.-J.; Chen, J.-H.; Su, C.-L.; Xia, Y.-Z. Org. Biomol. Chem. 2019, 17, 3940.  doi: 10.1039/C9OB00494G

    9. [9]

      Chen, Y.-Z.; Zhu, J.; Wu, J.-J.; Wu, L. Org. Biomol. Chem. 2018, 16, 6675.  doi: 10.1039/C8OB01640B

    10. [10]

      Han, J.-L.; Liao, Y.-T. Chang, C.-H. Eur. J. Org. Chem. 2019, 33, 5815.

    11. [11]

      Crosignani, S.; Linclau, B. J. Gen. Virol. 2006, 2, 129.

    12. [12]

      Tang, L.; Yang, Z.; Jiao, J.-C.; Cui, Y.; Zou, G.-D.; Zhou, Y.-Q.; Rao, W.-H.; Ma, X.-T. J. Org. Chem. 2019, 84, 10449.  doi: 10.1021/acs.joc.9b01808

    13. [13]

      Wang, R.; Han, J.; Li, C.-C.; Zhang, J.; Liang, Y.; Wang, T.; Zhang, Z.-T. Org. Biomol. Chem. 2018, 16, 2479.  doi: 10.1039/C8OB00135A

    14. [14]

      (a) Lin, Y.-M.; Yi, W.-B.; Shen, W.-Z.; Lu, G.-P. Org. Lett. 2016, 18, 592.
      (b) Qian, J.-L.; Yi, W.-B.; Huang, X.; Jasinski, J.-P.; Zhang, W. Adv. Synth. Catal. 2016, 358, 2811.
      (c) Yi, W.-B.; Qian, J.-L.; Lv, M.-F.; Cai, C. Synlett 2014, 26, 127.

    15. [15]

      Howard, J.-L.; Brand, M.-C.; Browne, D.-L. Angew. Chem., Int. Ed. 2018, 57, 16104.  doi: 10.1002/anie.201810141

    16. [16]

      (a) He, Y.; Zhang, X.-Y.; Shen, N.-N.; Fan, X.-S. J. Fluorine Chem. 2013, 156, 9.
      (b) Li, J.; Li, Y.-L.; Jin, N.; Ma, A.-L.; Huang, Y.-N.; Deng, J. Adv. Synth. Catal. 2015, 357, 2474.
      (c) Wu, S.-W.; Liu, F. Org. Lett. 2016, 18, 3642.

    17. [17]

      (a) He, Y.; Zhang, X.-Y.; Shen, N.-N.; Fan, X.-S. J. Fluorine Chem. 2013, 156, 9.
      (b) Singh, R.-P.; Martin, J.-L. J. Fluorine Chem. 2016, 181, 7.

    18. [18]

      (a) Barnette, W.-E. J. Am. Chem. Soc. 1984, 106, 452.
      (b) Fuglseth, E.; Thvedt, T.-H.-K.; Moll, M.-F.; Hoff, B.-H. Tetrahedron 2008, 64, 7318.
      (c) Kwiatkowski, P.; Beeson, T.-D.; Conrad, J.-C.; MacMillan, D.-W.-C. J. Am. Chem. Soc. 2011, 133, 1738.

    19. [19]

      (a) Wagner, P.-J.; Thomas, M.-J.; Puchalski, A.-E. J. Am. Chem. Soc. 1986, 108, 7739.
      (b) Makosza, M.; Bujok, R. Tetrahedron Lett. 2004, 45, 1385.

    20. [20]

      Zhang, R.; Ni, C.-F.; He, Z.-B.; Hu, J.-B. J. Fluorine Chem. 2017, 203, 166.  doi: 10.1016/j.jfluchem.2017.08.010

    21. [21]

      (a) Martinez-Haya, R.; Marzo, L.; Konig, B. Chem. Commun (Camb) 2018, 54, 11602.
      (b) Leng, D.-J.; Black, C.-M.; Pattison, G. Org. Biomol. Chem. 2016, 14, 1531.

    22. [22]

      Li, J.; Li, Y.-L.; Jin, N.; Ma, A.-L.; Huang, Y.-N.; Deng, J. Adv. Synth. Catal. 2015, 357, 2474.  doi: 10.1002/adsc.201500282

    23. [23]

      Chen, Z.; Zhu, W.; Zheng, Z.-B.; Zou, X.-Z. J. Fluorine Chem. 2010, 131, 340.  doi: 10.1016/j.jfluchem.2009.11.008

    24. [24]

      He, Y.; Zhang, X.-Y.; Shen, N.-N.; Fan, X.-S. J. Fluorine Chem. 2013, 156, 9.  doi: 10.1016/j.jfluchem.2013.08.006

    25. [25]

      Krane Thvedt, T.-H.; Fuglseth, E.; Sundby, E.; Hoff, B.-H. Tetrahedron 2009, 65, 9550.  doi: 10.1016/j.tet.2009.09.070

    26. [26]

      Fuglseth, E.; Thvedt, T.-H.-K.; Møll, M.-F.; Hoff, B.-H. Tetrahedron 2008, 64, 7318.  doi: 10.1016/j.tet.2008.05.060

  • 加载中
    1. [1]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    2. [2]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    5. [5]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    7. [7]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    19. [19]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(7)
  • Abstract views(1014)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return