Citation: Zhu Dong-Xing, Xu Ming-Hua. Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Aldehydes and Ketones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 255-275. doi: 10.6023/cjoc201910009 shu

Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Aldehydes and Ketones

  • Corresponding author: Xu Ming-Hua, xumh@sustech.edu.cn
  • Received Date: 10 October 2019
    Revised Date: 27 October 2019
    Available Online: 7 February 2019

    Fund Project: the National Natural Science Foundation of China 21971103the National Natural Science Foundation of China 81521005Project supported by the National Natural Science Foundation of China (Nos. 21672229, 81521005, 21971103) and the National Science & Technology Major Project of China (No. 2018ZX09711002-006)the National Natural Science Foundation of China 21672229the National Science & Technology Major Project of China 2018ZX09711002-006

Figures(13)

  • Chiral aryl alcohols are prevalent in a broad range of biologically active compounds, pharmaceutical agents and natural products. They also constitute a broad class of optically active building blocks for the synthesis of important chiral compounds. In recent years, organoboron reagents are widely used in organic synthesis as they possess advantages of ready availability, low toxicity, good air and moisture stability as well as high functional group compatibility. Since the first report of rhodium-catalyzed asymmetric addition of aryl boronic acids to aryl aldehydes in 1998 by Miyaura, the use of organoboron reagents in asymmetric addition to various carbonyl compounds under various transition-metal catalyses has been intensively investigated. Over the past two decades, transition metal-catalyzed asymmetric addition of organoboron reagents to aldehydes and ketones has proved as one of the most direct and powerful methods for accessing versatile optically active alcohols. The development and progress of a wide range of chiral ligands for Rh, Ru, Pd, Ir, Cu, Ni and Co catalysis for asymmetric addition of organoboron reagents to aldehydes and ketones are summarized, and the achievements in enantioselective synthesis of chiral aryl alcohols and their applications in the synthesis of related biocative products are described. Among them, rhodium and ruthenium-catalyzed enantioselective additions have received considerable attention. In the cases of activated carbonyl compounds such as α-aryl ketoesters and α-diaryl diketones, excellent results can be attained in terms of both yield and enantioselectivity. However, it remains a daunting challenge for highly enantioselective addition to simple unactivated aldehydes and ketones owing to the difficulty in overcoming stereo differentiation. Future efforts in the community would focus on developing new effective transition-metal catalysts in addressing these issues by promoting efficient transformation and controlling excellent enantioselectivity.
  • 加载中
    1. [1]

      (a) Dhillon, S.; Scott, L. J.; Plosker, G. L. CNS Drugs 2006, 20, 763.
      (b) Fournier, A. M.; Brown, R. A.; Farnaby, W.; Miyatake-On- dozabal, H.; Clayden, J. Org. Lett. 2010, 12, 2222.
      (c) Nathan, L. A. J. Appl. Ther. 1962, 4, 830.

    2. [2]

      Bai, D. L.; Chen, K. X.; Li, S. K.; Feng, S. Adv. Med. Chem. 2011, p. 290 (in Chinese).

    3. [3]

      (a) Heravi, M. M.; Zadsirjan, V.; Esfandyari, M.; Lashaki, T. B. Tetrahedron: Asymmetry 2017, 28, 987.
      (b) Zaitsev, A. B.; Adolfsson, H. Synthesis 2006, 1725.
      (c) Scott, H. K.; Aggarwal, V. K. Chem. Eur. J. 2011, 17, 13124.
      (d) Jacobsen, E. N.; Kakiuchi, F.; Konsler, R. G.; Larrow, J. F.; Tokunaga, F. Tetrahedron Lett. 1997, 38, 773.
      (e) Wang, C.; Luo, L.; Yamamoto, H. Acc. Chem. Res. 2016, 49, 193.
      (f) Sälinger, D.; Brückner, R. Chem.-Eur. J. 2009, 15, 6688.

    4. [4]

      (a) Hatano, M.; Ishihara, K. Synthesis 2008, 1647.
      (b) Rong, J.; Pellegrini, T.; Harutyunyan, S. R. Chem. Eur. J. 2016, 22, 3558.
      (c) Collados, J. F.; Sol, R.; Harutyunyan, S. R.; Macià, B. ACS Catal. 2016, 6, 1952.
      (d) Pellissier, H. Tetrahedron 2015, 71, 2487.
      (e) Liu, Y. L.; Lin, X. T. Adv. Synth. Catal. 2019, 361, 876.

    5. [5]

      Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279.  doi: 10.1002/(SICI)1521-3773(19981217)37:23<3279::AID-ANIE3279>3.0.CO;2-M

    6. [6]

      (a) Jiang, Z. T.; Wang, B. Q.; Shi, Z. J. Chin. J. Chem. 2018, 36, 954.
      (b) Wang, G. N.; Gan, Y.; Liu, Y. H. Chin. J. Chem. 2018, 36, 916.

    7. [7]

      Focken, T.; Rudolph, J.; Bolm, C. Synthesis 2005, 429.

    8. [8]

      (a) Suzuki, K.; Ishii, S.; Kondo, K.; Aoyama, T. Synlett 2006, 648.
      (b) Suzuki, K.; Kondo, K.; Aoyama, T. Synthesis 2006, 1360.
      (c) Arao, T.; Suzuki, K.; Kondo, K.; Aoyama, T. Synthesis 2006, 3809.

    9. [9]

      Duan, H. F.; Xie, J. H.; Shi, W. J.; Zhang, Q.; Zhou, Q. L. Org. Lett. 2006, 8, 1479.  doi: 10.1021/ol060360c

    10. [10]

      Jagt, R. B. C.; Toullec, P. Y.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Biomol. Chem. 2006, 4, 773.  doi: 10.1039/b518311a

    11. [11]

      (a) Noël, T.; Vandyck, K.; Van der Eycken, J. Tetrahedron 2007, 63, 12961.
      (b) Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. Chem. Commun. 2009, 45, 5713.

    12. [12]

      Morikawa, S.; Michigami, K.; Amii, H. Org. Lett. 2010, 12, 2520.  doi: 10.1021/ol100697a

    13. [13]

      (a) Ma, Q. S.; Ma, Y. D.; Liu, X.; Duan, W. Z.; Qu, B.; Song, C. Tetrahedron: Asymmetry 2010, 21, 292.
      (b) Duan, W. Z.; Ma, Y. D.; Qu, B.; Zhao, L.; Chen, J. Q.; Song, C. Tetrahedron: Asymmetry 2012, 23, 1369.
      (c) Duan, W. Z.; Ma, Y. D.; He, F. Y.; Zhao, L.; Chen, J. Q.; Song, C. Tetrahedron: Asymmetry 2013, 24, 241.
      (d) Wang, D. X.; Ma, Y. D.; He, F. Y.; Duan, W. Z.; Zhao, L.; Song, C. Synth. Commun. 2013, 43, 810.
      (e) Chen, J. Q.; Yang, S. B.; Chen, Z.; Song, C.; Ma, Y. D. Tetrahedron: Asymmetry 2015, 26, 288.

    14. [14]

      He, W. P.; Zhou, B. H.; Zhou, Y. L.; Li, X. L.; Fan, L. M.; Shou, H. W.; Li, J. Tetrahedron Lett. 2016, 57, 3152.  doi: 10.1016/j.tetlet.2016.06.023

    15. [15]

      Kamikawa, K.; Tseng, Y.-Y.; Jian, J.-H.; Takahashi, T.; Ogasawara, M. J. Am. Chem. Soc. 2017, 139, 1545.  doi: 10.1021/jacs.6b11243

    16. [16]

      (a) Yamamoto, Y.; Miyaura, N.; Kurihara, K. Angew. Chem., Int. Ed. 2009, 48, 4414.
      (b) Shirai, T.; Watanabe, M.; Kurihara, K.; Miyaura, N.; Yamamoto, Y. Molecules 2011, 16, 5020.
      (c) Yamamoto, Y.; Shirai, T.; Miyaura, N. Chem. Commun. 2012, 48, 2803.

    17. [17]

      Desroches, J.; Ariane Tremblay, A.; Paquin, J.-F. Org. Biomol. Chem. 2016, 14, 8764.  doi: 10.1039/C6OB01663D

    18. [18]

      Li, K.; Hu, N. F.; Luo, R. S.; Yuan, W. C.; Tang, W. J. J. Org. Chem. 2013, 78, 6350.  doi: 10.1021/jo400850m

    19. [19]

      Lu, Z. W.; Zhang, H. Y.; Yang, Z. P.; Ding, N.; Meng, L.; Wang. J. ACS Catal. 2019, 9, 1457.  doi: 10.1021/acscatal.8b04787

    20. [20]

      (a) Arao, T.; Kondo, K.; Aoyama, T. Tetrahedron Lett. 2007, 48, 4115.
      (b) Yamamoto, K.; Tsurumi, K.; Sakurai, F.; Kondo, K.; Aoyama, T. Synthesis 2008, 3585.

    21. [21]

      Karthikeyan, J.; Jeganmohan, M.; Cheng, C.-H. Chem.-Eur. J. 2010, 16, 8989.  doi: 10.1002/chem.201001160

    22. [22]

      (a) Suzuma, Y.; Hayashi, S.; Yamamoto, T.; Oe, Y.; Ohta, T.; Ito, Y. Tetrahedron: Asymmetry 2009, 20, 2751.
      (b) Loxq, P.; Debono, N.; Gülcemal, S.; Daran, J-C.; Manoury, E.; Poli, R.; Cetinkaya, B.; Labande, A. New J. Chem. 2014, 38, 338.
      (c) Zhang, R.; Xu, Q.; Zhang, X.; Zhang, T.; Shi, M. Tetrahedron: Asymmetry 2010, 21, 1928.

    23. [23]

      (a) Tokunaga, T.; Hume, W. E.; Nagamine, J.; Kawamura, T.; Taiji, M.; Nagata, R. Bioorg. Med. Chem. Lett. 2005, 15, 1789.
      (b) Tokunaga, T.; Hume, W. E.; Umezome, T.; Okazaki, K.; Ueki, Y.; Kumagai, K.; Hourai, S.; Nagamine, J.; Seki, H.; Taiji, M.; Noguchi, H.; Nagata, R. J. Med. Chem. 2001, 44, 4641.

    24. [24]

      Di Malta, A.; Garcia, G.; Roux, R.; Schoentjes, B.; Serradeil-le Gal, C.; Tonnerre, B.; Wagnon, J. WO 2003008407, 2003.

    25. [25]

      Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45, 3353.  doi: 10.1002/anie.200600392

    26. [26]

      Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2006, 8, 2715.  doi: 10.1021/ol0608101

    27. [27]

      Gui, J.; Chen, G.; Cao, P.; Liao, J. Tetrahedron: Asymmetry 2012, 23, 554.  doi: 10.1016/j.tetasy.2012.04.013

    28. [28]

    29. [29]

      Marques, C. S.; Burke, A. J. ChemCatChem 2016, 8, 3518.  doi: 10.1002/cctc.201600901

    30. [30]

      Lai, H. S.; Huang, Z. Y.; Wu, Q.; Qin, Y. J. Org. Chem. 2009, 74, 283.  doi: 10.1021/jo802036m

    31. [31]

      Liu, Z.; Gu, P.; Shi, M.; McDowell, P.; Li, G. G. Org. Lett. 2011, 13, 2314.  doi: 10.1021/ol200566s

    32. [32]

      Li, Q.; Wan, P.; Wang, S.; Zhuang, Y.; Li, L.; Zhou, Y.; He, Y.; Cao, R.; Qiu, L.; Zhou, Z. Appl. Catal., A 2013, 458, 201.  doi: 10.1016/j.apcata.2013.03.027

    33. [33]

      (a) Yamamoto, Y.; Yohd, M.; Shirai, T.; Ito, H.; Miyaura, N. Chem. Asian J. 2012, 7, 2446.
      (b) Yohda, M.; Yamamoto, Y. Tetrahedron: Asymmetry 2015, 26, 1430.

    34. [34]

      Shintani, R.; Takatsu, K.; Hayashi, T. Chem. Commun. 2010, 46, 6822.  doi: 10.1039/c0cc01635g

    35. [35]

      Zhuang, Y.; He, Y. W.; Zhou, Z. H.; Xia, W.; Cheng, C. Y.; Wang, M.; Chen, B.; Zhou, Z. Y.; Pang, J. Y.; Qiu, L.Y. J. Org. Chem. 2015, 80, 6968.  doi: 10.1021/acs.joc.5b00595

    36. [36]

      (a) Skaddan, M. B.; Kilbourn, M. R.; Snyder, S. E.; Sherman, P. S.; Desmond, T. J.; Frey, K. A. J. Med. Chem. 2000, 43, 4552.
      (b) Selent, J.; Brandt, W.; Pamperin, D.; Goeber, B. Bioorg. Med. Chem. 2006, 14, 1729.

    37. [37]

      Duan, H. F.; Xie, J. H. Qiao, X. C. Wang, L. X.; Zhou, Q. L. Angew. Chem., Int. Ed. 2008, 47, 4351.  doi: 10.1002/anie.200800423

    38. [38]

      Cai, F.; Pu, X. T.; Qi, X. B.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066.  doi: 10.1021/ja207748r

    39. [39]

      (a) Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Angew. Chem., Int. Ed. 2012, 51, 780.
      (b) Wang, H.; Zhu, T.-S.; Xu, M.-H. Org. Biomol. Chem. 2012, 10, 9158.

    40. [40]

      Li, Y.; Zhu, D.-X.; Xu, M.-H. Chem. Commun. 2013, 49, 11659.  doi: 10.1039/c3cc47927g

    41. [41]

      Zhu, T.-S.; Xu, M.-H. Chin. J. Chem. 2013, 31, 321.  doi: 10.1002/cjoc.201300063

    42. [42]

      Melcher, M.-C.; Ivšić, T.; Olagnon, C.; Tenten, C.; Letzen, A.; Strand, D. Chem.-Eur. J. 2018, 24, 2344.  doi: 10.1002/chem.201704816

    43. [43]

      Chang, C.-A.; Uang, T.-Y.; Jian, J.-H.; Zhou, M.-Y.; Chen, M.-L.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Adv. Synth. Catal. 2018, 360, 3381.  doi: 10.1002/adsc.201800575

    44. [44]

      Bartlett, S. L.; Keiter, K. M.; Johnson, J. S. J. Am. Chem. Soc. 2017, 139, 3911.  doi: 10.1021/jacs.7b00943

    45. [45]

      Jung, J. K.; Johnson, B. R.; Duong, T.; Decaire, M.; Uy, J.; Gharbaoui, T.; Boatman, P. D.; Sage, C. R.; Chen, R.; Richman, J. G.; Connolly, D. T.; Semple, G. J. Med. Chem. 2007, 50, 1445.  doi: 10.1021/jm070022x

    46. [46]

      Singh, S. B.; Zink, D. L.; Quamina, D. S.; Pelaez, F.; Teran, A.; Felock, P.; Hazuda, D. J. Tetrahedron Lett. 2002, 43, 2351.  doi: 10.1016/S0040-4039(02)00265-4

    47. [47]

      Feng, X.; Nie, Y.; Yang, J.; Du, H. Org. Lett. 2012, 14, 624.  doi: 10.1021/ol203238j

    48. [48]

      Wen, Q.; Zhang, L.; Xiong, J.; Zeng, Q. L. Eur. J. Org. Chem. 2016, 5360.

    49. [49]

      Zhu, T.-S.; Chen, J.-P.; Xu, M.-H. Chem. Eur. J. 2013, 19, 865.  doi: 10.1002/chem.201203701

    50. [50]

      Zhang, Z.-F.; Zhu, D.-X.; Chen, W.-W.; Xu, B.; Xu, M.-H. Org. Lett. 2017, 19, 2726.  doi: 10.1021/acs.orglett.7b01070

    51. [51]

      Yu, Y.-N.; Xu, M.-H. Org. Chem. Front. 2014, 1, 738.  doi: 10.1039/C4QO00135D

    52. [52]

      (a) Rowley, M.; Hallett, D. J.; Goodacre, S.; Moyes, C.; Crawforth, J.; Sparey, T. J.; Patel, S.; Marwood, R.; Thomas, S.; Hitzel, L.; O'Connor, D.; Szeto, N.; Castro, J. L.; Hutson, P. H.; MacLeod, A. M. J. Med. Chem. 2001, 44, 1603.
      (b) van Niel, M. B.; Collins, I.; Beer, M. S.; Broughton, H. B.; Cheng, S. K.; Goodacre, S. C.; Heald, A.; Locker, K. L.; MacLeod, A. M.; Morrison, D.; Moyes, C. R.; O'Connor, D.; Pike, A.; Rowley, M.; Russell, M. G.; Sohal, B.; Stanton, J. A.; Thomas, S.; Verrier, H.; Watt, A. P.; Castro, J. L. J. Med. Chem. 1999, 42, 2087.
      (c) Domagala, J. M.; Hanna, L. D.; Heifetz, C. L.; Hutt, M. P.; Mich, T. F.; Sanchez, J. P.; Solomon, M. J. Med. Chem. 1986, 29, 394.
      (d) Rosenblum, S. B.; Huynh, T.; Afonso, A.; Davis, H. R. Jr.; Yumibe, N.; Clader, J. W.; Burnett, D. A. J. Med. Chem. 1998, 41, 973.

    53. [53]

      Martina, S. L. X.; Jagt, R. B. C.; Vries, J. G.; Feringa B. L.; Minnaard, A. J. Chem. Commun. 2006, 42, 4093.

    54. [54]

      Jumde, V. R.; Facchetti, S.; Iuliano, A. Tetrahedron: Asymmetry 2010, 21, 2775.  doi: 10.1016/j.tetasy.2010.11.009

    55. [55]

      Luo, R. S.; Li, K.; Hu, Y. L.; Tang, W. J. Adv. Synth. Catal. 2013, 355, 1297.  doi: 10.1002/adsc.201201125

    56. [56]

      Korenaga, T.; Ko, A.; Uotani, K.; Tanaka, Y.; Sakai, T. Angew. Chem., Int. Ed. 2011, 50, 10703.  doi: 10.1002/anie.201104588

    57. [57]

      Liao, Y. X.; Xing, C. H.; Hu, Q. S. Org. Lett. 2012, 14, 1544.  doi: 10.1021/ol300275s

    58. [58]

      Huang, L. W.; Zhu, J. B.; Jiao, G. J.; Wang, Z.; Yu, X. X.; Deng, W. P.; Tang, W. J. Angew. Chem., Int. Ed. 2016, 55, 4527.  doi: 10.1002/anie.201600979

    59. [59]

      Bouffard, J.; Itami, K. Org. Lett. 2009, 11, 4410.  doi: 10.1021/ol9017613

    60. [60]

      Liu, G. X.; Lu, X. Y. J. Am. Chem. Soc. 2006, 128, 16504.  doi: 10.1021/ja0672425

    61. [61]

      Gallego, G. M.; Sarpong, R. Chem. Sci. 2012, 3, 1338.  doi: 10.1039/c2sc01068b

    62. [62]

      Low, D. W.; Pattison, G.; Wieczysty, M. D.; Churchill, G. H.; Lam, H. W. Org. Lett. 2012, 14, 2548.  doi: 10.1021/ol300845q

    63. [63]

      Zhu, D.-X.; Chen, W.-W.; Xu, M.-H. Tetrahedron 2016. 72, 2037.

    64. [64]

      Chen, D.; Xu, M.-H. Chin. J. Org. Chem. 2017, 37, 1589 (in Chinese).
       

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

Metrics
  • PDF Downloads(85)
  • Abstract views(5571)
  • HTML views(956)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return