Citation: Li Qingxue, Li Mengwei, Shi Shaoqing, Ji Xiaoshuang, He Chunlan, Jiang Bo, Hao Wenjuan. PhI(OAc)2-Mediated Dediazodioxygenation of α-Diazo Carbonyls[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 384-390. doi: 10.6023/cjoc201909041 shu

PhI(OAc)2-Mediated Dediazodioxygenation of α-Diazo Carbonyls

  • Corresponding author: Jiang Bo, jiangchem@jsnu.edu.cn Hao Wenjuan, wjhao@jsnu.edu.cn
  • (These authors contributed equally to this work)
  • Received Date: 30 September 2019
    Revised Date: 15 October 2019
    Available Online: 1 February 2019

    Fund Project: the Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions and the National College Student's Innovation and Entrepreneurship Training Program 201810320156Xthe National Natural Science Foundation of China 21602087Project supported by the National Natural Science Foundation of China (No. 21602087), the Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions and the National College Student's Innovation and Entrepreneurship Training Program (Nos. 201810320156X, 201810320019Z)the Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions and the National College Student's Innovation and Entrepreneurship Training Program 201810320019Z

Figures(4)

  • A new PhI(OAc)2-mediated dediazodioxygenation of α-diazo carbonyls was reported. By using the characteristics of the in-situ-generated O-centered radicals from the interaction of PhI(OAc)2 and N-hydroxy phthalimide (or N-hydroxy succinimide), O-centered radical-triggered dioxygenation of α-diazo carbonyls was achieved in this transformation, which led to the synthesis of a series of α, α-dioxoarylketones and α, α-dioxoesters with moderate to good yields. Based on the experimental results and literature reports, the possible reaction mechanism was proposed, which involved O-centered radical addition, C-N bond homolysis and radical cross coupling. In addition, the reaction featured mild conditions and simple operation without any catalyst.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Clapham, B.; Spanka, C.; Janda, K. D. Org. Lett. 2001, 3, 2173.
      (b) Matsushita, H.; Lee, S.-H.; Yoshida, K.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. Org. Lett. 2004, 6, 4627.

    4. [4]

    5. [5]

      (a) Maas, G. Chem. Soc. Rev. 2004, 33, 183.
      (b) Sambasivanand, R.; Ball, Z. T. Angew. Chem., Int. Ed. 2012, 51, 8568.
      (c) Adly, F. G.; Gardiner, M. G.; Ghanem, A. Chem.-Eur. J. 2016, 22, 3447.
      (d) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198.
      (e) Xu, H.; Li, Y.-P.; Cai, Y.; Wang, G.-P.; Zhu, S. F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 7697.

    6. [6]

      (a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
      (b) Yakura, T.; Ozono, A.; Matsui, K.; Yamashita, M.; Fujiwara, T. Synlett 2013, 24, 65.
      (c) Roberts, E.; Sançon, J. P.; Sweeney, J. B. Org. Lett. 2005, 7, 2075.

    7. [7]

      (a) Neupane, P.; Li, X.; Jung, J. H.; Lee, Y. R.; Kim, S. H. Tetrahedron 2012, 68, 2496.
      (b) Dyer, J.; Jockusch, S.; Balsanek, V.; Sames, D.; Turro, N. J. Org. Chem. 2005, 70, 2143.
      (c) Dussault, P. H.; Xu, C. Tetrahedron Lett. 2004, 45, 7455.

    8. [8]

      (a) Wang, N.-N.; Huang, L.-R.; Hao, W.-J.; Zhang, T.-S.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2016, 18, 1298.
      (b) Hao, W.-J.; Gao, Q.; Jiang, B.; Liu, F.; Wang, S.-L.; Tu, S.-J.; Li, G. J. Org. Chem. 2016, 81, 11276.
      (c) Wang, N.-N.; Hao, W.-J.; Zhang, T.-S.; Li, G.; Wu, Y.-N.; Tu, S.-J.; Jiang, B. Chem. Commun. 2016, 52, 5144.
      (d) Zhang, T.-S.; Hao, W.-J.; Wang, N.-N.; Li, G.; Jiang, D.-F.; Tu, S.-J.; Jiang, B. Org. Lett. 2016, 18, 3078.
      (e) Zhang, T.-S.; Zhang, H.; Fu, R.; Wang, J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2019, 55, 13231.

    9. [9]

    10. [10]

    11. [11]

      (a) Lu, H.; Dzik, W. I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 8518.
      (b) Zheng, J.; Qi, J.; Cui, S. J. Org. Chem. 2015, 80, 9224.
      (c) Jiang, J.; Liu, J.; Yang, L.; Shao, Y.; Cheng, J.; Bao, X.; Wan, X. Chem. Commun. 2015, 51, 14728.

    12. [12]

      Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Angew. Chem., Int. Ed. 2015, 54, 1231.  doi: 10.1002/anie.201408874

    13. [13]

      Wang, N.-N.; Hao, W.-J.; Zhang, T.-S.; Li, G.; Wu, Y.-N.; Tu, S.-J.; Jiang, B. Chem. Commun. 2016, 52, 5144.  doi: 10.1039/C6CC00816J

    14. [14]

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    3. [3]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    4. [4]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    8. [8]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    9. [9]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(28)
  • Abstract views(2864)
  • HTML views(479)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return