Citation: Li Xue, Song Zirui, Chen Xin, Cai Yichao, Liu Yajie, Chen Chunxia, Peng Jinsong. Synthesis of Carbazolequinones by Pd-Catalyzed Double Arylation Process[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 950-958. doi: 10.6023/cjoc201909040 shu

Synthesis of Carbazolequinones by Pd-Catalyzed Double Arylation Process

  • Corresponding author: Chen Chunxia, ccx0109@nefu.edu.cn Peng Jinsong, jspeng1998@nefu.edu.cn
  • Received Date: 28 September 2019
    Revised Date: 28 November 2019
    Available Online: 25 April 2020

    Fund Project: Project supported by the Fundamental Research Funds for the Central Universities (No. 2572017AB25) and the National Innovation Experiment Program for University Students (No. 201810225098)the National Innovation Experiment Program for University Students 201810225098the Fundamental Research Funds for the Central Universities 2572017AB25

Figures(4)

  • Starting from 2-aminonaphthalene-1, 4-dione and o-dibromoarene, palladium-catalyzed one-pot synthesis of carbazolequinone was examined in detail. With PdCl2 as the catalyst, 2-dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl (Xphos) as ligand and K2CO3 as base in N, N-dimethylformamide (DMF) at 160℃ for 72 h, the annulation reaction afforded the corresponding product by N-H/C-H double arylation process in 81% yield. With different o-dihaloarenes, a series of carbazolequinone derivatives were synthesized to examine the scope and limitation of the above method, and the structure of products was characterized by 1H NMR and 13C NMR spectra.
  • 加载中
    1. [1]

      (a) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
      (b) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193.
      (c) Norman, A. R.; Norcott, P.; McErlean, C. S. P. Tetrahedron Lett. 2016, 57, 4001.

    2. [2]

      (a) Yang, X.-H.; Gao, J.-H.; Guo, J.; Zhao, Z.-H.; Zhang, S.-L.; He, Y. Life Sci. 2019, 219, 20.
      (b) Bernardo, P. H.; Chai, C. L. L.; Heath, G. A.; Mahon, P. J.; Smith, G. D.; Waring, P.; Wilkes, B. A. J. Med. Chem. 2004, 47, 4958.
      (c) Khan, Q. A.; Lu, J.; Hecht, Sidney, M. H. J. Nat. Prod. 2009, 72, 438.

    3. [3]

      Zhang, K.; Xu, H.-J.; Liu, Z.-B.; Song, C.-J. Chin. J. Org. Chem. 2019, 39, 1142(in Chinese).
       

    4. [4]

      (a) Ji, F.-X.; Huang, H.; Li, M.-Y.; Guo, Y.-Q.; Song, C.-J.; Chang, J.-B.; Synthesis 2018, 50, 3921.
      (b) Mori-Quiroz, L. M.; Dekarske, M. M.; Prinkki, A. B.; Clift, M. D. J. Org. Chem. 2017, 82, 12257.
      (c) Lee, S.; Kim, K.-H.; Cheon, C.-H. Org. Lett. 2017, 19, 2785.

    5. [5]

      (a) Furukawa, H.; Wu, T. S.; Ohta, T.; Kuoh, C. S. Chem. Pharm. Bull. 1985, 33, 4123.
      (b) Rickards, R. W.; Rothschild, J. M.; Willis, A. C.; Chazal, N. M.; Kirk, J.; Kirk, K.; Saliba, K. J.; Smith, G. D. Tetrahedron 1999, 55, 13513.
      (c) Moon, Y.; Jeong, Y.; Kook, D.; Hong, S. Org. Biomol. Chem. 2015, 13, 3918.
      (d) Sieveking, I.; Thomas P.; Estévez, J. C.; Quiñones, N.; Cuéllar, M. A.; Villena, J.; Christian E. B.; Fierro, A.; Tapia, R. A.; Maya, J. D.; López-Muñoz, R.; Cassels, B. K.; Estévez, R. J.; Salas, C. O. Bioorg. Med. Chem. 2014, 22, 4609.

    6. [6]

      (a) Bernardo, P. H.; Chai, C. L. L.; Heath, G. A.; Mahon, P. J.; Smith, G. D.; Waring, P.; Wilkes, B. A. J. Med. Chem. 2004, 47, 4958.
      (b) Scott, T. L.; SÖderberg B. C. G. Tetrahedron 2003, 59, 6323.
      (c) Ramkumar, N.; Nagarajan, R. Org. Biomol. Chem. 2015, 13, 11046.

    7. [7]

      (a) Moon, Y.; Jeong, Y.; Kook, D.; Hong, S. Org. Biomol. Chem. 2015, 13, 3918.
      (b) Sieveking, I.; Thomas, P.; Estévez, J. C.; Quiñones, N.; Cuéllar, M. A.; Villena, J.; Espinosa-Bustos, C.; Fierro, A.; Tapia, R. A.; Maya, J. D.; López-Muñoz, R.; Cassels, B. K.; Estévez, R. J.; Salas, C. O. Bioorg. Med. Chem. 2014, 22, 4609.

    8. [8]

      (a) Ramkumar, N.; Nagarajan, R. RSC Adv. 2015, 5, 87838.
      (b) Kaliyaperumal, S. A.; Banerjee, S.; Kumar, U. K. S. Org. Biomol. Chem. 2014, 12, 6105.
      (c) Bolibrukh, K.; Khoumeri, O.; Polovkovych, S.; Novikov, V.; Terme, T.; Vanelle, P. Synlett 2014, 2765.
      (d) Sridharan, V.; Martín, M. A.; Menéndez, J. C. Eur. J. Org. Chem. 2009, 4614.

    9. [9]

      Nishiyama, T.; Choshi, T.; Kitano, K.; Hibino, S. Tetrahedron Lett. 2011, 52, 3876.  doi: 10.1016/j.tetlet.2011.05.066

    10. [10]

      (a) Indumathi, T.; Fronczek, F. R.; Prasad, K. J. R. Tetrahedron Lett. 2014, 55, 5361.
      (b) Dethe, D. H.; Murhade, G. M. Eur. J. Org. Chem. 2014, 6953.
      (c) Abe, T.; Ikeda, T.; Yanada, R.; Ishikura, M. Org. Lett. 2011, 13, 3356.
      (d) Bhattacherjee, D.; Ram, S.; Chauhan, A. S.; Sheetal, Y.; Das, P. Chem.-Eur. J. 2019, 25, 5934.

    11. [11]

      (a) Xu, S.; Nguyen, T.; Pomilio, I.; Vitale, M. C.; Velu, S. E. Terahedron 2014, 70, 5928.
      (b) Guo, J.; Kiran, I. N. C.; Reddy, R. S.; Gao, J.-S.; Tang, M.-Q.; Liu, Y.-Y.; He, Y. Org. Lett. 2016, 18, 2499.
      (c) Do, H. H.; Ejaz, S. A.; Molenda, R.; Ohlendorf, L.; Villinger, A.; Khan, S. U.; Lecka, J.; Sevigny, J.; Iqbal, J.; Ehlers, P.; Langer, P. ChemistrySelect 2019, 4, 2545.
      (d) Singh, S.; Samineni, R.; Pabbaraja, S.; Mehta, G. Org. Lett. 2019, 21, 3372.
      (e) Lin, K.; Jian, Y.; Zhao, P.; Zhao, C.-S.; Pan, W.-D.; Liu, S. Org. Chem. Front. 2018, 5, 590.
      (f) Guo, J.; Kiran, I. N. C.; Gao, J. S.; Reddy, R. S.; He, Y. Tetrahedron Lett. 2016, 57, 3481.

    12. [12]

      Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651.  doi: 10.1021/cr0505268

    13. [13]

      Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.  doi: 10.1002/anie.201107017

    14. [14]

      (a) Li, X.; Chen, X.; Wang, H.; Chen, C.; Sun, P.; Mo, B.; Peng, J. Org. Biomol. Chem. 2019, 17, 4014.
      (b) Yue, Y.; Peng, J.; Wang, D.; Bian, Y.; Sun, P.; Chen, C. J. Org. Chem. 2017, 82, 5481.
      (c) Yu, Y.; Yue, Y.; Wang, D.; Li, X.; Chen, C.; Peng, J. Synthesis 2016, 48, 3941.
      (d) Zhao, G.; Chen, C.; Yue, Y.; Yu, Y.; Peng, J. J. Org. Chem. 2015, 80, 2827.
      (e) Wang, H.; Chen, C.; Huang, Z.; Yao, L.; Li, B.; Peng, J. Synthesis 2015, 47, 2457.
      (f) Chen, C.; Shang, G.; Zhou, J.; Yu, Y.; Li, B.; Peng, J. Org. Lett. 2014, 16, 1872.

    15. [15]

      Lisboa, C. S.; Lucas N. C.; Garden S. J. G. Dyes Pigm. 2016, 134, 618.  doi: 10.1016/j.dyepig.2016.08.012

    16. [16]

      Sridharan, V.; Martín, M. A.; Menéndez, J. C. Eur. J. Org. Chem. 2009, 27, 4614.  doi: 10.1002/ejoc.200900537

    17. [17]

      (a) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.
      (b) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066.

    18. [18]

      Josey, B. J.; Inks, E. S.; Wen, X.-J.; Chou, C. J. J. Med. Chem. 2013, 56, 1007.  doi: 10.1021/jm301485d

    19. [19]

      Patil, P.; Nimonkar, A.; Akamanchi, K. G. J. Org. Chem. 2014, 79, 2331.  doi: 10.1021/jo500131h

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    15. [15]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    16. [16]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    17. [17]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

Metrics
  • PDF Downloads(8)
  • Abstract views(1250)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return