Citation: Huang Guobao, Chen Zhilin, Wei Xiansheng, Chen Yu, Li Xiuying, Zhong Hui, Tan Mingxiong. Recent Progress on the Construction and Function of Macrocyclic Compounds Containing Hydrogen Bond Donors[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 614-624. doi: 10.6023/cjoc201909029 shu

Recent Progress on the Construction and Function of Macrocyclic Compounds Containing Hydrogen Bond Donors

  • Corresponding author: Zhong Hui, lxya8401@163.com Tan Mingxiong, tanmx00@163.com
  • Received Date: 18 September 2019
    Revised Date: 31 October 2019
    Available Online: 2 December 2019

    Fund Project: the Yulin Normal University Research Grant 201810606010the National Natural Science Foundation of China 21961042the Yulin Normal University Research Grant 2018YJKY36the Natural Science Foundation of Guangxi Province 2018GXNSFAA294064Project supported by the National Natural Science Foundation of China (No. 21961042), the Natural Science Foundation of Guangxi Province (No. 2018GXNSFAA294064) and the Yulin Normal University Research Grant (Nos. 2018YJKY36, 201810606010)

Figures(14)

  • Because of the N-H group structure in the macrocyclic compound containing hydrogen bond Donors, it can provide additional intermolecular forces in the host-guest chemistry, and this character is widely used in the molecular recognition, self-assembly, supramolecular catalysis and other fields. The recent progress on the synthetic methods of macrocyclic compounds based on (thio) urea, amide and its molecular recognition in 2010~2019 are summarized. It is hoped that this review can be referred to synthesis and applications of this kind of macrocyclic compounds.
  • 加载中
    1. [1]

    2. [2]

      Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.  doi: 10.1021/ja01002a035

    3. [3]

      Huang, G.-B.; Jiang, W. Prog. Chem. 2015, 27, 744 (in Chinese).

    4. [4]

      (a) Zheng, B.; Wang, F.; Dong, S.-Y.; Huang, F.-H. Chem. Soc. Rev. 2012, 5, 1621.
      (b) Cheng, H.-B.; Zhang, H.-Y.; Liu, Y. J. Am. Chem. Soc. 2013, 135, 10190.

    5. [5]

      (a) Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 10, 681.
      (b) Chen, Y.; Liu, Y. Chem. Soc. Rev. 2010, 39, 495.

    6. [6]

      (a) Guo, D.-S.; Wang, K.; Liu, Y. J. Inclusion Phenom. Macrocyclic Chem. 2008, 1-2, 1.
      (b) Guo, D.-S.; Liu, Y. Chem. Soc. Rev. 2012, 41, 5907.

    7. [7]

      (a) Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294.
      (b) Cragg, P. J.; Sharma, K. Chem. Soc. Rev. 2012, 41, 597.
      (c) Ogoshi, T.; Yamagishi, T.-A. Eur. J. Org. Chem. 2013, 15, 2961.
      (d) Zhang, H.; Zhao, Y. Chem.-Eur. J. 2013, 19, 16862.
      (e) Wang, M.-X. Chem. Commun. 2008, 4541.
      (f) Guo, Q.-H.; Fu, Z.-D.; Zhao, L.; Wang, M.-X. Angew. Chem., Int. Ed. 2014, 53, 13548.
      (g) Wang, M.-X. Acc. Chem. Res. 2012, 45, 182.
      (h) Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Yu, Y.; Jia, X.; Li, C. Chem. Sci. 2015, 6, 197.
      (i) Tian, X. H.; Chen, C. F. Org. Lett. 2010, 12, 524.
      (j) Xue, M.; Chen, C. F. Org. Lett. 2009, 11, 5294.
      (k) Wang, J. H.; Feng, H. T.; Zheng, Y. S. Chem. Commun. 2014, 50, 11407.
      (l) Chun, Y.; Singh, N. J.; Hwang, I. C.; Lee, J. W.; Yu, S.-U.; Kim, K.-S. Nat. Commun. 2013, 4, 1797.
      (m) Lee, S.; Chen, C.-H.; Flood, A.-H. Nat. Chem. 2013, 5, 704.

    8. [8]

      Shimizu, L. S.; Smith, M. D.; Hughes, A. D.; Shimizu, K. D. Chem. Commun. 2001, 1592.

    9. [9]

      (a) Shimizu, L. S.; Hughes, A. D.; Smith, M. D.; Davis, M. J.; Zhang, P.; Loye zur, H.; Shimizu, K. D. J. Am. Chem. Soc. 2003, 125, 14972.
      (b) Yang, J.; Dewal, M. B.; Shimizu, L. S. J. Am. Chem. Soc. 2006, 128, 8122.
      (c) Yang, J.; Dewal, M. B.; Profeta, S.; Smith, M. D.; Li, Y.; Shimizu, L. S. J. Am. Chem. Soc. 2008, 130, 612.
      (d) Dewal, M. B.; Xu, Y.; Yang, J.; Mohammed, F.; Smith, M. D.; Shimizu, L. S. Chem. Commun. 2008, 3909.
      (e) Yang, J.; Dewal, M. B.; Sobransingh, D.; Smith, M. D.; Xu, Y.; Shimizu, L. S. J. Org. Chem. 2009, 74, 102.
      (f) Xu, Y.; Smith, M. D.; Krause, J.; Shimizu, L. S. J. Org. Chem. 2009, 74, 4874.
      (f) Roy, K.; Wang, C.; Smith, M.-D.; Pellechia, P.; Shimizu, L. S. J. Org. Chem. 2010, 75, 5453.

    10. [10]

      (a) Meshcheryakov, D.; Arnaud-Neu, F.; Böhmer, V.; Bolte, M.; Cavaleri, J.; Hubscher-Bruder, V.; Thondorf, I.; Weener, S. Org. Biomol. Chem. 2008, 6, 3244.
      (b) Meshcheryakov, D.; Böhmer, V.; Bolte, M.; Hubscher-Bruder, V.; Arnaud-Neu, F. Chem. Eur. J. 2009, 15, 4811.

    11. [11]

      Dawn, S.; Dewal, M. B.; Sobransingh, D.; Paderes, M. C.; Wibowo, A.; Smith, M.; Krause, J.; Pellechia, P.; Shimizu, L. S. J. Am. Chem. Soc. 2011, 133, 7025.  doi: 10.1021/ja110779h

    12. [12]

      Roy, K.; Wang, C.; Smith, M. D.; Dewal, M. B.; Wibowo, A. C.; Brown, J. C.; Ma, S.; Shimizu, L. S. Chem. Commun. 2011, 47, 277.  doi: 10.1039/C0CC01952F

    13. [13]

      Geer, M. F.; Smith, M. D.; Shimizu, L. S. CrystEngComm 2011, 13, 3665.  doi: 10.1039/c1ce05207a

    14. [14]

      Roy, K.; Wibowo, A.; Pellechia, P.; Ma, S.; Geer, M.; Shimizu, L. S. Chem. Mater. 2012, 24, 4773  doi: 10.1021/cm302658q

    15. [15]

      Geer, M. F.; Walla, M.; Solntsev, K.; Strassert, C.; Shimizu, L. S. J. Org. Chem. 2013, 78, 5568.  doi: 10.1021/jo400685u

    16. [16]

      Xiao, T.; Li, S.; Zhang, X.; Lin, C.; Wang, L. Y. Chin. J. Chem. 2013, 31, 627.  doi: 10.1002/cjoc.201300246

    17. [17]

      Zhang, D. S.; Chen, J. P.; Zeng, Y.; Yu, T. J.; Li, Y. Chin. J. Org. Chem. 2013, 33, 110 (in Chinese).
       

    18. [18]

      Kretschemer, C.; Dittmann, G.; Beck, J. Beilstein J. Org. Chem. 2014, 10, 1834.  doi: 10.3762/bjoc.10.193

    19. [19]

      Huang, G. B.; He, Z.; Cai, C.; Pan, F.; Yang, D.; Rissanen, K.; Jiang, W. Chem. Commun. 2015, 51, 15490.  doi: 10.1039/C5CC06768E

    20. [20]

      Huang, G. B.; Valkonen, A.; Rissanen, K.; Jiang, W. Chem. Commun. 2016, 52, 9078.  doi: 10.1039/C6CC00349D

    21. [21]

      Huang, G. B.; Liu, V.; Valkonen, A.; Yao, H.; Rissanen, K.; Jiang, W. Chin. Chem. Lett. 2018, 29, 91.  doi: 10.1016/j.cclet.2017.07.005

    22. [22]

      (a) Kondo, S.; Sonoda, H.; Katsu, T.; Unno, M. Sens. Actuators, B 2011, 160, 684.
      (b) Satake, A.; Ishizawa, Y.; Katagiri, H.; Kondo, S. J. Org. Chem. 2016, 81, 9848.

    23. [23]

      Osawa, K.; Tagaya, H.; Kondo, S. J. Org. Chem. 2019, 84, 6623.  doi: 10.1021/acs.joc.9b00073

    24. [24]

      Tromans, R.; Carter, T.; Chabanne, T.; Crump, M.; Li, H.; Matlock, J.; Orchard, M.; Davis, A. P. Nat. Chem. 2019, 11, 52.

    25. [25]

      (a) Shorthill, B. J.; Avetta, C. T.; Glass, T. E. J. Am. Chem. Soc. 2004, 126, 12732.
      (b) Sharma, S. K.; Upreti, S.; Gupta, R. Eur. J. Inorg. Chem. 2007, 3247.
      (c) Gasparrini, F.; Pierini, M.; Villani, C.; Filippi, A.; Speranza, M. J. Am. Chem. Soc. 2008, 130, 522.
      (d) Shang, X. F.; Lin, H.; Cai, Z. S.; Lin, H. K. J. Heterocycl. Chem. 2008, 45, 1329.
      (d) Ghorai, A.; Gayen, A.; Kulsi, G.; Padmanaban, E.; Laskar, A.; Achari, B.; Mukhopadhyay, C.; Chattopadhyay, P. Org. Lett. 2011, 13, 5512.

    26. [26]

      (a) Fuller, A. M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons, S.; Walker, D. B. Angew. Chem. 2004, 116, 4004.
      (b) Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.
      (c) Fuller, A. M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons, S.; Walker, D. B. J. Am. Chem. Soc. 2005, 137, 12612.
      (d) Crowley, J. D.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Perret-Aebi, L. E.; Petzold, C.; Slawin, A. M. Z.; Symes, M. D. J. Am. Chem. Soc. 2007, 129, 15085.
      (e) Barrell, M. J.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2008, 47, 8036.
      (f) Altieri, A.; Aucagne, V.; Carrillo, R.; Clarkson, G.; D'Souza, D. M.; Dunnet, J.; Leigh, D. A.; Mullen, K. M. Chem. Sci. 2011, 2, 1922.

    27. [27]

      (a) Klein, E.; Ferrand, Y.; Auty, E. K.; Davis, A. P. Chem. Commun. 2007, 2390.
      (b) Ferrand, Y.; Crump, M. P.; Davis, A. P. Science 2007, 318, 619.
      (c) Klein, E.; Ferrand, Y.; Barwell, N. P.; Davis, A. P. Angew. Chem., Int. Ed. 2008, 48, 2693.
      (d) Challinor, L.; Klein, E.; Davis, A. P. Synlett 2008, 14, 2137.

    28. [28]

      Qin, B.; Chen, X. Y.; Fang, X.; Shu, Y. Y.; Yip, Y. K.; Yan, Y.; Pan, S. Y.; Ong, W. Q.; Ren, C. L.; Su, H. B.; Zeng, H. Q. Org. Lett. 2008, 10, 5127.  doi: 10.1021/ol801980h

    29. [29]

      Qin, B.; Ren, C.; Ye, R.; Sun, C.; Chalid, K.; Chen, X.; Li, Z.; Xue, F.; Su, H.; Chass, G.; Zeng, H. Q. J. Am. Chem. Soc. 2010, 132, 9564.  doi: 10.1021/ja1035804

    30. [30]

      (a) Helsel, A. J.; Brown, A. L.; Yamato, K.; Feng, W.; Yuan, L. H.; Clements, A.; Harding, S. V.; Szabo, G.; Shao, Z. F.; Gong, B. J. Am. Chem. Soc. 2008, 130, 15784.
      (b) Wang, X.; Liu, R.; Sathyamoorthy, B.; Yamato, K.; Liang, G.; Shen, L.; Ma, S.; Sukumaran, D.; Szyperski, T.; Fang, W.; He, L.; Chen, X.; Gong, B. J. Am. Chem. Soc. 2015, 137, 5879.

    31. [31]

      Yang, Y.; Feng, W.; Hu, J.; Zou, S.; Gao, R.; Yamato, K.; Kline, M.; Cai, Z.; Gao, Y.; Wang, Y.; Li, Y.; Yang, Y.; Yuan, L.; Zeng, X.; Gong, B. J. Am. Chem. Soc. 2011, 133, 18590.  doi: 10.1021/ja208548b

    32. [32]

      (a) Ferrand, Y.; Klein, E.; Barwell, N. P.; Crump, M. P.; J. Vicent, J. C.; Boons, G.-J.; Ingale, S.; Davis, A. P. Angew. Chem., Int. Ed. 2009, 49, 1775.
      (b) Davis, A. P. Org. Biomol. Chem. 2009, 7, 3629.
      (c) Barwell, N. P.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2009, 48, 7363.

    33. [33]

      Barwell, N. P.; Davis, A. P. J. Org. Chem. 2011, 76, 6548.  doi: 10.1021/jo200755z

    34. [34]

      (a) Sookcharoenpinyo, B.; Klein, E.; Ferrand, Y.; Walker, B.; Brotherhood, P.; Ke, C.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2012, 51, 4586.
      (b) Ke, C.; Destecroix, H.; Crump, M. P.; Davis, A. P. Nat. Chem. 2012, 4, 718.
      (c) Howgego, J.; Butts, C.; Crump, M. P.; Davis, A. P. Chem. Commun. 2013, 49, 3110.
      (d) Destecroix, H.; Renney, C.; Mooibroek, T.; Carter, T.; Stewart, P.; Crump, M. P.; Davis, A. P. Angew. Chem. Int. Ed. 2015, 54, 2057.
      (e) Rios, P.; Carter, T.; Mooibroek, T.; Crump, M. P.; Lisbjerg, M.; Pittelkow, M.; Supekar, N.; Boons, G.; Davis, A. P. Angew. Chem., Int. Ed. 2016, 55, 3387.
      (f) Carter, T.; Mooibroek, T.; Stewart, P.; Crump, M. P.; Galan, M.; Davis, A. P. Angew. Chem., Int. Ed. 2016, 55, 9311.
      (g) Mandal, P.; Kauffmann, B.; Destecroix, H.; Ferrand, Y.; Davis, A. P.; Huc, I. Chem. Commun. 2016, 52, 9355.
      (h) Rios, P.; Mooibroek, T.; Carter, T.; Willams, C.; Wilson, M.; Crump, M. P.; Davis, A. P. Chem. Sci. 2017, 8, 4056.

    35. [35]

      Chen, M. J.; Han, S. J.; Jiang, L. S.; Zhou, S. G.; Jiang, F.; Xu, Z. K.; Liang, J. D.; Zhang, S. H. Chem. Commun. 2010, 46, 3932.  doi: 10.1039/c003118f

    36. [36]

      Yang, D. K.; Zeng, Z. J.; Chen, M. J.; Pan, S. W.; Yang, Y.; Li, M.; Lei, C. Y.; Jiang. L. S. Acta Chim. Sinica 2012, 74, 1385 (in Chinese).

    37. [37]

      Wang, D.; You, L.; Wang, J.; Wang, H.; Zhang, D.; Li, Z. T. Tetrahedron Lett. 2013, 54, 6967.  doi: 10.1016/j.tetlet.2013.10.064

    38. [38]

      Chen, Y.; Wang, L.; Zhang, L.; Zhu, J.; Wang, H.; Zhang, D.; Li, Z. T. Tetrahedron 2014, 70, 5483.  doi: 10.1016/j.tet.2014.06.113

    39. [39]

      Huang, G.; Wang, S.; Ke, H.; Yang, L.; Jiang, W. J. Am. Chem. Soc. 2016, 138, 14550  doi: 10.1021/jacs.6b09472

    40. [40]

      Martí-Centelles, V.; Burguete, M. I.; Luis, S. J. Org. Chem. 2016, 81, 2143.  doi: 10.1021/acs.joc.5b02676

    41. [41]

      Mao, L.; Pan, W.; Fu, Y.; Chen, L.; Xu, M.; Ren, Y.; Feng, W.; Yuan, L. Org. Lett. 2017, 19, 18.  doi: 10.1021/acs.orglett.6b03125

    42. [42]

      Wang, F. F.; Ou, M.; Deng, Y. X.; Ran, X.; Zhang, Q. L.; Zhu, B. X. Chin. J. Org. Chem. 2014, 34, 334 (in Chinese).
       

    43. [43]

      Wei, X. K.; Gu, J. C.; Liu, X. L.; Huang, C.; Zhu, B. X. Chin. J. Org. Chem. 2018, 38, 3386 (in Chinese).
       

    44. [44]

      (a) Johnston, A. G.; Leigh, D. A.; Pritchard, R. J.; Deegan, M. D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1209.
      (b) Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.

    45. [45]

      María, D.; Claramunt, R.; Torralba, M.; Torres, M.; Elguero, J. Tetrahedron Lett. 2019, 60, 1206.  doi: 10.1016/j.tetlet.2019.03.066

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    11. [11]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    17. [17]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

Metrics
  • PDF Downloads(41)
  • Abstract views(3501)
  • HTML views(1088)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return