Citation: Yan Lijun, Xu Han, Wang Yan, Dong Jianwei, Wang Yongchao. Advances in Multicomponent Asymmetric Cascade Synthesis Involving Nitroolefin Catalyzed by Diarylprolinol Derivatives[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 284-299. doi: 10.6023/cjoc201909028 shu

Advances in Multicomponent Asymmetric Cascade Synthesis Involving Nitroolefin Catalyzed by Diarylprolinol Derivatives

  • Corresponding author: Dong Jianwei, jwdongyn@mail.qjnu.edu.cn Wang Yongchao, yongchaowang126@126.com
  • Received Date: 17 September 2019
    Revised Date: 28 October 2019
    Available Online: 13 February 2019

    Fund Project: the Applied Basic Research Project of Yunnan Provincial Department of Science and Technology 2018FD016Project supported by the Applied Basic Research Project of Yunnan Provincial Department of Science and Technology (Nos. 2017FD073, 2018FD016, 2018FD081), the Scientific Research Foundation of Yunnan Provincial Education Department (No. 2017ZZX075) and the Yunnan Local Colleges Applied Basic Research Project (No. 2017FH001-092)the Yunnan Local Colleges Applied Basic Research Project 2017FH001-092the Applied Basic Research Project of Yunnan Provincial Department of Science and Technology 2018FD081the Applied Basic Research Project of Yunnan Provincial Department of Science and Technology 2017FD073the Scientific Research Foundation of Yunnan Provincial Education Department 2017ZZX075

Figures(17)

  • Nitroolefin is an important class of organic synthons. The synthetic method of multicomponent asymmetric cascade reactions involving nitroolefin catalyzed by diarlyprolinol derivatives is quite important for the construction of complex chiral compounds. It is widely used in organic synthesis and new drugs development. In this paper, the multi-component asymmetric cascade synthesis involving nitroalkenes catalyzed by diarlyprolinol derivatives is comprehensively summarized based on the type of target compounds. In detail, the catalyst systems, reaction mechanisms, experimental results, reaction advantages, existing problems and limitations for this synthetic method are introduced respectively. The future development for this synthetic period is further evaluated as well.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.
      (b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
      (c) Jia, Z.-J.; Jiang, H.; Li, J.-L.; Gschwend, B.; Li, Q.-Z.; Yin, X.; Grouleff, J.; Chen, Y.-C.; Jørgensen, K. A. J. Am. Chem. Soc. 2011, 133, 5053.
      (d) Zu, L.; Xie, H.; Li, H.; Wang, J.; Yu, X.; Wang, W. Chem.-Eur. J. 2008, 14, 6333.

    4. [4]

      (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 1971, 10, 496.
      (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.

    5. [5]

      Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794.  doi: 10.1002/anie.200462101

    6. [6]

      Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212.  doi: 10.1002/anie.200500599

    7. [7]

      (a) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem., Int. Ed. 2009, 48, 3699.
      (b) Silvi, M.; Chatterjee, I.; Liu, Y.; Melchiorre, P. Angew. Chem., Int. Ed. 2013, 52, 10780.
      (c) Ma, A.; Ma, D. Org. Lett. 2010, 12, 3634.
      (d) Johansen, T. K.; Gómez, C. V.; Bak, J. R.; Davis, R. L.; Jørgensen, K. A. Chem.-Eur. J. 2013, 19, 16518.
      (e) Talavera, G.; Reyes, E.; Vicario, J. L.; Carrillo, L. Angew. Chem., Int. Ed. 2012, 51, 4104.
      (f) Li, J. L.; Zhou, S. L.; Chen, P. Q.; Dong, L.; Liu, T. Y.; Chen, Y. C. Chem. Sci. 2012, 3, 1879.

    8. [8]

      (a) Barrett, A. G.; Graboski, G. G. Chem. Rev. 1986, 86, 751.
      (b) Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. 1985, 18, 284.
      (c) Zimmer, R.; Reissig, H. U. Chem. Soc. Rev. 2014, 43, 2888.

    9. [9]

    10. [10]

    11. [11]

      (a) Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li. X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. J. Med. Chem. 2013, 56, 5553.
      (b) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.
      (c) Kumari, G.; Modi, M.; Gupta, S. K.; Singh, R. K. Eur. J. Med. Chem. 2011, 46, 1181.
      (d) Arun, Y.; Saranraj, K.; Balachandran, C.; Perumal, P. T. Eur. J. Med. Chem. 2014, 74, 50.
      (e) Kathirvelan, D.; Haribabu, J.; Reddy, B. S. R.; Balachandran, C.; Duraipandiyan, V. Bioorg. Med. Chem. Lett. 2015, 25, 389.

    12. [12]

      (a) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas Ⅲ, C. F. ACS Catal. 2014, 4, 743.
      (b) Tian, L.; Luo, Y. C.; Hu, X. Q.; Xu, P. F. Asian J. Org. Chem. 2016, 5, 580.
      (c) Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 6607.
      (d) Fang, X.; Wang, C.-J. Org. Biomol. Chem. 2018, 16, 2591.

    13. [13]

      Jiang, K.; Jia, Z.-J.; Chen, S.; Wu, L.; Chen, Y.-C. Chem.-Eur. J. 2010, 16, 2852.  doi: 10.1002/chem.200903009

    14. [14]

      Jiang, K.; Jia, Z.-J.; Yin, X.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 2766.  doi: 10.1021/ol100857s

    15. [15]

      Xie, X.; Peng, C.; He, G.; Leng, H. J.; Wang, B.; Huang, W.; Han, B. Chem. Commun. 2012, 48, 10487.  doi: 10.1039/c2cc36011j

    16. [16]

      Zhou, B.; Yang, Y.; Shi, J.; Luo, Z.; Li, Y. J. Org. Chem. 2013, 78, 2897.  doi: 10.1021/jo302655u

    17. [17]

      Li, Z.-L.; Liu, C.; Tan, R.; Tong, Z.-P.; Liu, Y.-K. Catalysts 2016, 6, 65.  doi: 10.3390/catal6050065

    18. [18]

      Chaudhari, P. D.; Hong, B. C.; Lee, G. H. Org. Lett. 2017, 19, 6112.  doi: 10.1021/acs.orglett.7b02962

    19. [19]

      (a) Rajapaksa, N. S.; McGowan, M. A.; Rienzo, M.; Jacobsen, E. N. Org. Lett. 2013, 15, 706.
      (b) Granger, B. A.; Wang, Z.; Kaneda, K.; Fang, Z.; Martin, S. F. ACS Comb. Sci. 2013, 15, 379.
      (c) Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368.
      (d) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.

    20. [20]

      Tan, Y.; Luan, H. L.; Lin, H.; Sun, X. W.; Yang, X. D.; Dong, H. Q.; Lin, G. Q. Chem. Commun. 2014, 50, 10027.  doi: 10.1039/C4CC01929F

    21. [21]

      Enders, D.; Wang, C.; Mukanova, M.; Greb, A. Chem. Commun. 2010, 46, 2447.  doi: 10.1039/c002839h

    22. [22]

      (a) Karasu, S.; Bayram, Y.; Ozkan, K.; Sagdic, O. J. Food Meas. Charact. 2019, 13, 1515.
      (b) Wu, X.; Yang, S.; Yu, H.; Ye, L.; Su, B.; Shao, Z. Biosci. Biotechnol. Biochem. 2019, 83, 1263.

    23. [23]

      Enders, D.; Huüttl, M. R. M.; Raabe, G.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 267.  doi: 10.1002/adsc.200700396

    24. [24]

      Enders, D.; Huüttl, M. R. M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem., Int. Ed. 2007, 46, 467.  doi: 10.1002/anie.200603434

    25. [25]

      Zhang, F.-L.; Xu, A.-W.; Gong, Y.-F.; Wei, M.-H.; Yang, X.-L. Chem.-Eur. J. 2009, 15, 6815.  doi: 10.1002/chem.200900613

    26. [26]

      Enders, D.; Kruüell, R.; Bettray, W. Synthesis 2010, 567.

    27. [27]

      Rueping, M.; Haack, K. L.; Ieawsuwan, W.; Sunden, H.; Blanco, M.; Schoepke, F. R. Chem. Commun. 2011, 47, 3828.  doi: 10.1039/c1cc10245a

    28. [28]

      Jia, Y.; Mao, Z.; Wang, R. Tetrahedron: Asymmetry 2011, 22, 2018.  doi: 10.1016/j.tetasy.2011.11.023

    29. [29]

      Erdmann, N.; Philipps, A. R.; Atodiresei, I.; Enders, D. Adv. Synth. Catal. 2013, 355, 847.  doi: 10.1002/adsc.201201099

    30. [30]

      Philipps, A. R.; Fritze, L.; Erdmann, N.; Enders, D. Synthesis 2015, 47, 2377.  doi: 10.1055/s-0034-1380197

    31. [31]

      (a) Simon-Levert, A.; Arrault, A.; Bontemps-Subielos N; Canal, C.; Banaigs, B. J. Nat. Prod. 2005, 68, 1412.
      (b) Pratap, R.; Ram, V. J. Chem. Rev. 2014, 114, 10476.
      (c) Tangdenpaisal, K.; Chuayboonsong, K.; Ruchirawat, S.; Ploypradith, P. J. Org. Chem. 2017, 82, 2672.
      (d) Garrido, L.; Zubia, E.; Ortega, M. J.; Salva, J. J. Nat. Prod. 2002, 65, 1328.

    32. [32]

      Kotame, P.; Hong, B. C.; Liao, J.-H. Tetrahedron Lett. 2009, 50, 704.  doi: 10.1016/j.tetlet.2008.11.106

    33. [33]

      Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H. Org. Lett. 2010, 12, 776.  doi: 10.1021/ol902840x

    34. [34]

      Kumar, M.; Chauhan, P.; Valkonen, A.; Rissanen, K.; Enders, D. Org. Lett. 2017, 19, 3025.  doi: 10.1021/acs.orglett.7b01322

    35. [35]

      Kumar, M.; Chauhan, P.; Bailey, S. J.; Jafari, E.; von Essen, C.; Rissanen, K.; Enders, D. Org. Lett. 2018, 20, 1232.  doi: 10.1021/acs.orglett.8b00175

    36. [36]

      (a) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149.
      (b) Mengozzi, L.; Gualandi, A.; Cozzi, P. G. Chem. Sci. 2014, 5, 3915.
      (c) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775.
      (d) Eschenbrenner-Lux, V.; Küchler, P.; Ziegler, S.; Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53, 2134.
      (e) Khashper, A.; Lubell, W. D. Org. Biomol. Chem. 2014, 12, 5052.

    37. [37]

      (a) Hayashi, Y.; Gotoh, H.; Masui, R.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 4012.
      (b) Han, B.; Li, J. L.; Ma, C.; Zhang, S. J.; Chen, Y. C. Angew. Chem., Int. Ed. 2008, 47, 9971.
      (c) Han, B.; He, Z. Q.; Li, J. L.; Li, R.; Jiang, K.; Liu, T. Y.; Chen, Y. C. Angew. Chem., Int. Ed. 2009, 48, 5474.

    38. [38]

      Wang, Y.; Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. J.; Xu, P.-F. Chem.-Eur. J. 2010, 16, 3922.  doi: 10.1002/chem.201000059

    39. [39]

      Urushima, T.; Sakamoto, D.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12, 4588.  doi: 10.1021/ol1018932

    40. [40]

      Chawla, R.; Rai, A.; Singh, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2012, 53, 5323.  doi: 10.1016/j.tetlet.2012.07.097

    41. [41]

      Tan, Y.; Chen, Y. J.; Lin, H.; Luan, H. L.; Sun, X. W.; Yang, X. D.; Lin, G. Q. Chem. Commun. 2014, 50, 15913.  doi: 10.1039/C4CC07703B

    42. [42]

      (a) Kariba, R. M.; Houghton, P. J.; Yenesew, A. J. Nat. Prod. 2002, 65, 566.
      (b) Hubbs, J. L.; Heathcock, C. H. Org. Lett. 1999, 1, 1315.
      (c) Padwa, A.; Flick, A. C.; Lee, H. I. Org. Lett. 2005, 7, 2925.
      (d) Zhou, J.; Magomedov, N. A. J. Org. Chem. 2007, 72, 3808.
      (e) Wöfling, J.; Frank, É.; Schneider, G.; Bes, M. T.; Tietze, L. F. Synlett 1998, 1205.
      (f) Mernyák, E.; Schneider, G.; Herbst-Irmer, R.; Kubas, M.; Wölfing, J. Steroids 2006, 71, 558.

    43. [43]

      Rai, A.; Singh, A. K.; Singh, S.; Yadav, L. D. S. Synlett 2011, 335.

    44. [44]

      Rai, A.; Singh, A. K.; Singh, P.; Yadav, L. D. S. Tetrahedron Lett. 2011, 52, 1354.  doi: 10.1016/j.tetlet.2011.01.079

    45. [45]

      Jensen, K. L.; Dickmeiss, G.; Donslund, B. S.; Poulsen, P. H.; Jørgensen, K. A. Org. Lett. 2011, 13, 3678.  doi: 10.1021/ol201328s

    46. [46]

    47. [47]

      Ishikawa, H.; Sawano, S.; Yasui, Y.; Shibata, Y.; Hayashi, Y. Angew. Chem., Int. Ed. 2011, 50, 3774.  doi: 10.1002/anie.201005386

    48. [48]

      Han, B.; Xie, X.; Huang, W.; Li, X.; Yang, L.; Peng, C. Adv. Synth. Catal. 2014, 356, 3676.  doi: 10.1002/adsc.201400622

    49. [49]

      (a) Okpekon, T.; Millot, M.; Champy, P.; Gleye, C.; Yolou, S.; Bories, C.; Loiseau, P.; Laurens, A.; Hocquemiller, R. Nat. Prod. Res. 2009, 23, 909.
      (b) Seiser, T.; Cramer, N. Angew. Chem., Int. Ed. 2010, 49, 10163.
      (c) Kim, S. H.; Kwon, S. H.; Park, S. H.; Lee, J. K.; Bang, H. S.; Nam, S. J.; Kwon, H. C.; Shin, J.; Oh, D. C. Org. Lett. 2013, 15, 1834.
      (d) Yang, Y.; Philips, D.; Pan, S. J. Org. Chem. 2011, 76, 1902.

    50. [50]

      Li, X.; Yang, L.; Peng, C.; Xie, X.; Leng, H.-J.; Wang, B.; Tang, Z.-W.; He, G.; Ouyang, L.; Huang, W.; Han, B. Chem. Commun. 2013, 49, 8692.  doi: 10.1039/c3cc44004d

    51. [51]

      Dochain, S.; Vetica, F.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem. 2016, 128, 16387.  doi: 10.1002/ange.201610196

    52. [52]

      (a) Gao, C.; Han, L.; Zheng, D.; Jin, H.; Gai, C.; Wang, J.; Zhang, H.; Zhang, L.; Fu, H. J. Nat. Prod. 2015, 78, 630.
      (b) Lee, S. H.; Tanaka, T.; Nonaka, G. I.; Nishioka, I. J. Nat. Prod. 2004, 67, 1018.
      (c) Vila, R.; Mundina, M.; Muschietti, L.; Priestap, H. A.; Bandoni, A. L.; Adzet, T.; Cañigueral, S. Phytochemistry 1997, 46, 1127.

    53. [53]

      (a) Nagata, H.; Inagaki, Y.; Tanaka, M.; Ojima, M.; Kataoka, K.; Kuboniwa, M.; Nishida, N.; Shimizu, K.; Osawa, K. J. Periodontol. 2008, 79, 1378.
      (b) Kashiwada, Y.; Nonaka, G. I.; Nishioka, I.; Chang, J. J.; Lee, K. H. J. Nat. Prod. 1992, 55, 1033.

    54. [54]

      (a) De Boggiatto, M. V.; De Heluani, C. S.; De Fenik, I. J.; Catalan, C. A. J. Org. Chem. 1987, 52, 1505.
      (b) Wei, G. L.; Rosazza, J. P. Tetrahedron Lett. 1990, 31, 2833.
      (c) Peters, R.; Fischer, D. F. Angew. Chem., Int. Ed. 2006, 45, 5736.

    55. [55]

      Xia, A.-B.; Pan, G.-J.; Wu, C.; Liu, X.-L.; Zhang, X.-L.; Li, Z.-B.; Du, X.-H.; Xu, D.-Q. Adv. Synth. Catal. 2016, 358, 3155.  doi: 10.1002/adsc.201600292

    56. [56]

      (a) Cabrera, S.; Aleman, J.; Bolze, P.; Bertelsen, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2008, 47, 121.
      (b) Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129, 7498.
      (c) Varga, S.; Jakab, G.; Drahos, L.; Holczbauer, T.; Czugler, M.; Soós, T. Org. Lett. 2011, 13, 5416.

    57. [57]

      (a) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416.
      (b) Lathrop, S. P.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628.
      (c) Scroggins, S. T.; Chi, Y.; Fréchet, J. M. Angew. Chem., Int. Ed. 2010, 49, 2393.
      (d) Wang, C.; Han, Z. Y.; Luo, H. W.; Gong, L. Z. Org. Lett. 2010, 12, 2266.

    58. [58]

      Enders, D.; Schmid, B.; Erdmann, N.; Raabe, G. Synthesis 2010, 2271.

    59. [59]

      Mao, Z.; Jia, Y.; Xu, Z.; Wang, R. Adv. Synth. Catal. 2012, 354, 1401.

    60. [60]

      Han, B.; Huang, W.; Ren, W.; He, G.; Wang, J. H.; Peng, C. Adv. Synth. Catal. 2015, 357, 561.  doi: 10.1002/adsc.201400764

    61. [61]

      Raja, A.; Hong, B. C.; Liao, J. H.; Lee, G. H. Org. Lett. 2016, 18, 1760.  doi: 10.1021/acs.orglett.6b00459

    62. [62]

      (a) S Hamama, W.; G El-Gohary, H.; Kuhnert, N.; H Zoorob, H. Curr. Org. Chem. 2012, 16, 373.
      (b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
      (c) Brune, K. Acute Pain 1997, 1, 33.

    63. [63]

      (a) Yoshida, H.; Yanai, H.; Namiki, Y.; Fukatsu-Sasaki, K.; Furutani, N.; Tada, N. CNS Drug Rev. 2006, 12, 9.
      (b) Hadi, V.; Koh, Y. H.; Sanchez, T. W.; Barrios, D.; Neamati, N.; Jung, K. W. Bioorg. Med. Chem. Lett. 2010, 20, 6854.
      (c) Chande, M. S.; Barve, P. A.; Suryanarayan, V. J. Heterocycl. Chem. 2007, 44, 49.

    64. [64]

      Li, J. H.; Cui, Z. H.; Du, D. M. Org. Chem. Front. 2016, 3, 1087.  doi: 10.1039/C6QO00208K

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    17. [17]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(12)
  • Abstract views(3773)
  • HTML views(565)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return