Progress on the Photocatalytic Organic Hydrogen-Evolution Coupling/Aromatization Reaction
- Corresponding author: Luo Shuping, Luoshuping@zjut.edu.cn
Citation:
Chen Feng, Chen Hao, Wu Qing'an, Luo Shuping. Progress on the Photocatalytic Organic Hydrogen-Evolution Coupling/Aromatization Reaction[J]. Chinese Journal of Organic Chemistry,
;2020, 40(2): 339-350.
doi:
10.6023/cjoc201909024
Shaw, M. H.; Twilton, J.; MacMillan, D. W. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449
Karkas, M. D.; Porco, J. A., Jr.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683.
doi: 10.1021/acs.chemrev.5b00760
Shvydkiv, O.; Nolan, K.; Oelgemoller, M. Beilstein J. Org. Chem. 2011, 7, 1055.
doi: 10.3762/bjoc.7.121
Xuan, J.; Xiao, W. -J. Angew. Chem. Int. Ed. 2012, 51, 6828.
doi: 10.1002/anie.201200223
Luo, S. -P.; Chen, N.-Y.; Sun, Y.-Y.; Xia, L.-M.; Wu, Z.-C. Junge, H.; Beller, M.; Wu, Q.-A. Dyes Pigm. 2016, 134, 580.
doi: 10.1016/j.dyepig.2016.07.040
Takeda, H.; Ishitani, O., Coord. Chem. Rev. 2010, 254, 346
doi: 10.1016/j.ccr.2009.09.030
Chen J.-X.; Miao, Y.-Y. Nat. Gas Chem. Ind. 2019, 44, 116 (in Chinese).
Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36.
doi: 10.1016/j.tetlet.2013.10.090
Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
doi: 10.1039/C5CY01289A
Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057
Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
doi: 10.1021/jo00979a024
Tamao, K. K. Y.; Sumitani, K. J. Am. Chem. Soc. 1972, 26, 9268.
Hiyama, T.; Sawahata, M.; Obayashi, M. Chem. Informationsdienst 1984, 15.
Zhang, W.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2015, 35, 1820 (in Chinese).
Cao, S.-S. Chem. Bull. 2019, 82, 684 (in Chinese).
Yuan, D.; Zhang, Q.; Liao, S.; Xiong, W.; Yuan, L.; Cai, Q.; Yang, M.; Li, X.; Jiang, Y.; Liu, Y.; Li, P.; Xu, Z.; Sun, P.; Geng, H. Chin. J. Org. Chem. 2015, 35, 961 (in Chinese).
Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
doi: 10.1002/anie.201304268
Tang, S.; Zeng, L.; Lei, A.-W. J. Am. Chem. Soc. 2018, 140, 13128.
doi: 10.1021/jacs.8b07327
Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
doi: 10.1021/acs.accounts.8b00267
Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34 (in Chinese).
doi: 10.3969/j.issn.0253-2409.2017.01.006
Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.
Zhang, P., Ph.D. Dissertation, Dalian University of Technology, Dalian, 2011 (in Chinese).
Schrauzer, G. N. Acc. Chem. Res. 1968, 1, 97.
doi: 10.1021/ar50004a001
Connolly, P.; Espenson, J. H. Inorg. Chem. 1986, 25, 2684.
doi: 10.1021/ic00236a006
Pantani, O.; Naskar, S.; Guillot, R.; Millet, P.; Anxolabéhère- Mallart, E.; Aukauloo, A. Angew. Chem., Int. Ed. 2008, 47, 9948.
doi: 10.1002/anie.200803643
Razavet, M.; Artero, V.; Fontecave, M. Inorg. Chem. 2005, 44, 4786.
doi: 10.1021/ic050167z
Baffert, C.; Artero, V.; Fontecave, M., Inorg. Chem. 2007, 46, 1817.
doi: 10.1021/ic061625m
Hu, X.; Brunschwig, B. S.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 8988.
doi: 10.1021/ja067876b
Zhong, J.-J.; Meng, Q. Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.
doi: 10.1021/ol500534w
Zhong, J. J.; Wu, C.-J.; Meng, Q. Y.; Gao, X.-W.; Lei, T.; Tung, C. H.; Wu, L.-Z. Adv. Synth. Catal. 2014, 356, 2846.
doi: 10.1002/adsc.201400588
Gao, X. W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391.
doi: 10.1021/acscatal.5b00093
Liu, C.; Zhang, H.; Shi, W.; Lei, A.-W. Chem. Rev. 2011, 111, 1780.
doi: 10.1021/cr100379j
Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
doi: 10.1021/cr100198w
Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
doi: 10.1021/cr100280d
Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937.
doi: 10.1039/c0cs00063a
Li, Z.; Yu, R.; Li, H. Angew. Chem., Int. Ed. 2008, 120, 7607.
doi: 10.1002/ange.200802215
Liu, D.; Liu, C.; Li, H.; Lei, A.-W. Chem. Commun. 2014, 50, 3623.
doi: 10.1039/c4cc00867g
Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Ye, C.; Li, Z.-J.; Chen, B.; Tung, C. H.; Wu, L.-Z. Chemistry 2015, 21, 18080
doi: 10.1002/chem.201503361
Rezaei, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M. R.; Jafari, A. A.; Zare, H. R. Eur. J. Med. Chem. 2009, 44, 4266.
doi: 10.1016/j.ejmech.2009.07.009
Turski, L.; Schneider, H. H.; Neuhaus, R. Restor. Neurol. Neurosci. 2000, 17, 45.
Niu, L.; Wang, S.; Liu, J.; Yi, H.; Liang, X.-A.; Liu, T.; Lei, A.-W. Chem. Commun. 2018, 54, 1659.
doi: 10.1039/C7CC09624K
Hu, X.; Zhang, G.-D.; Bu, F.-X.; Luo, X.; Yi, K.-B.; Zhang, H.; Lei, A.-W. Chem. Sci. 2018, 9, 1521.
doi: 10.1039/C7SC04634K
Hu, X.; Zhang, G.; Bu, F.; Lei, A. Angew. Chem., Int. Ed. 2018, 57, 1286.
doi: 10.1002/anie.201711359
Zhang, G.; Lin, Y.; Luo, X.; Hu, X.; Chen, C.; Lei, A.-W. Nat. Commun. 2018, 9, 1225.
doi: 10.1038/s41467-018-03534-z
Schlogl, R. Angew. Chem., Int. Ed. 2003, 42, 2004.
doi: 10.1002/anie.200301553
Karam, A. R.; Catarí, E. L.; López-Linares, F.; Agrifoglio, G.; Albano, C. L.; Díaz-Barrios, A.; Lehmann, T. E. Appl. Catal. 2005, 280, 165.
doi: 10.1016/j.apcata.2004.10.047
Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
doi: 10.1021/jacs.6b05498
Vicentini, C. B.; Romagnoli, C.; Andreotti, E. Agric. Food Chem. 2007, 55, 10331.
doi: 10.1021/jf072077d
Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.; Lei, A.-W. Nat. Commun. 2017, 8, 14226.
doi: 10.1038/ncomms14226
Marson, C. M. Chem. Soc. Rev. 2011, 40, 5514.
doi: 10.1039/c1cs15119c
Baviskar, A. T.; Amrutkar, S. M.; Trivedi, N.; Chaudhary, V.; Nayak, A.; Guchhait, S. K.; Banerjee, U. C.; Bharatam, P. V.; Kundu, C. N. ACS Med. Chem. Lett. 2015, 6, 481.
doi: 10.1021/acsmedchemlett.5b00040
Chen, H.; Yi, H.; Tang, Z.; Bian, C.; Zhang, H.; Lei, A.-W. Adv. Synth. Catal. 2018, 360, 3220.
doi: 10.1002/adsc.201800531
Niu, L.; Liu, J.; Yi, H.; Wang, S.; Liang, X.-A.; Singh, A. K.; Chiang, C.-W.; Lei, A.-W. ACS Catal. 2017, 7, 7412.
doi: 10.1021/acscatal.7b02418
Janicki, S. Z.; Schuster, G. B. J. Am. Chem. Soc. 1995, 117, 8524.
doi: 10.1021/ja00138a005
Somei, M.; Yamada, F. J. Nat. Prod. 2004, 21, 278.
doi: 10.1039/b212257j
Somei, M.; Yamada, F. J. Nat. Prod. 2005, 22, 73.
doi: 10.1039/b316241a
Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489.
doi: 10.1021/cr900211p
Wu, C.-J.; Meng, Q.-Y.; Lei, T.; Zhong, J.-J.; Liu, W.-Q.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2016, 6, 4635.
doi: 10.1021/acscatal.6b00917
Petersen, A. R.; Taylor, R. A.; Vicente-Hernandez, I.; Mallender, P. R.; Olley, H.; White, A. J.; Britovsek, G. J. J. Am. Chem. Soc. 2014, 136, 14089.
doi: 10.1021/ja5055143
Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
doi: 10.1039/c2cs15323h
Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A.-W. Chem. Rev. 2015, 115, 12138.
doi: 10.1021/cr500431s
Zhang, M.-L.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.
doi: 10.1039/C7QO00795G
Sun, Q, W. R.; Cai, S. J. Med. Chem. 2011, 54, 1126.
doi: 10.1021/jm100912b
Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A.-W. J. Am. Chem. Soc. 2015, 137, 9273.
doi: 10.1021/jacs.5b05665
Welsch, M. E.; , Snyder, S. A., Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
doi: 10.1016/j.cbpa.2010.02.018
Zhao, Q.-Q.; Hu, X.-Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2016, 52, 12749.
doi: 10.1039/C6CC05897C
Tian, W.-F.; Wang, D.-P.; Wang, S.-F.; He, K.-H.; Cao, X.-P.; Li, Y. Org. Lett. 2018, 20, 1421.
doi: 10.1021/acs.orglett.8b00193
Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
doi: 10.1021/cr900202j
Voica, A. F.; Mendoza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P. S. Nat. Chem. 2012, 4, 629.
doi: 10.1038/nchem.1385
Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352.
doi: 10.1021/ja00365a091
Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723.
doi: 10.1021/ja00377a032
Buist, P. H. Nat. Prod. Rep. 2004, 21, 249.
doi: 10.1039/b302094k
Breslow, R.; Baldwin, S.; Flechtner, T.; Kalicky, P.; Liu, S.; Washburn, W. J. Am. Chem. Soc. 1973, 95, 3251.
doi: 10.1021/ja00791a031
Bigi, M. A.; Reed, S. A.; White, M. C. Nat. Chem. 2011, 3, 216.
doi: 10.1038/nchem.967
West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.
doi: 10.1038/ncomms10093
He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
doi: 10.1002/anie.201612486
Sahoo, M. K.; Balaraman, E. Green Chem. 2019, 21, 2119.
doi: 10.1039/C9GC00201D
Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.
doi: 10.1021/jacs.7b00253
Fuse, H.; Kojima, M.; Mitsunuma, H.; Kanai, M. Org. Lett. 2018, 20, 2042.
doi: 10.1021/acs.orglett.8b00583
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349