Citation: Cai Jinfang, Jiang Hua, Cui Zhihua, Chen Weiguo. Research Progress in Design, Synthesis and Application for Quinoidal Heterocyclic Compounds[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 351-363. doi: 10.6023/cjoc201909022 shu

Research Progress in Design, Synthesis and Application for Quinoidal Heterocyclic Compounds

  • Corresponding author: Jiang Hua, jh@zstu.edu.cn
  • Received Date: 15 September 2019
    Revised Date: 14 October 2019
    Available Online: 1 February 2019

    Fund Project: the Fundamental Research Funds of Zhejiang Sci-Tech University 2019Q018the Public Welfare Technology Research Project of Zhejiang Province LGG18B060003the National Natural Science Foundation of China 21808210Project supported by the Public Welfare Technology Research Project of Zhejiang Province (No. LGG18B060003), the National Natural Science Foundation of China (Nos. 21808210, 51673176) and the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 2019Q018)the National Natural Science Foundation of China 51673176

Figures(11)

  • Quinoidal heterocyclic (thiophene, pyrrole, furan, etc.) molecules have the characteristics of rigid backbone, low highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) level, narrow band gap and high molar extinction coefficient, and so on. Because of their planar structures, quinoidal molecules usually have strong intermolecular charge transfer ability due to the strong intermolecular interaction. Up to now, quinoidal heterocyclic molecules have become a research hotspot in the field of organic semiconductor materials, especially in the field of organic field effect transistors. According to the structural features of quinoidal heterocyclic molecules and the classification basis of terminal groups, the research progress of quinoidal heterocyclic compounds in molecular design, synthesis and application in recent years is reviewed, and the development of quinoidal heterocyclic molecules is prospected.
  • 加载中
    1. [1]

      Casado, J.; Rocio, P. O.; Juan, T. N. Chem. Soc. Rev. 2012, 41, 5672.  doi: 10.1039/c2cs35079c

    2. [2]

      Burrezo, P. M.; Zafra, J. L.; Navarrete, J. T. L.; Casado, J. Angew. Chem., Int. Ed. 2017, 56, 2250.  doi: 10.1002/anie.201605893

    3. [3]

      Wang, R.-H.; Qiao, X.-L.; Li, H.-X. Chin. Sci. Bull. 2016, 61, 296 (in Chinese).

    4. [4]

      Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F. Adv. Mater. 1996, 8, 242.  doi: 10.1002/adma.19960080312

    5. [5]

      Yui, K.; Ishida, H.; Aso, Y.; Otsubo, T.; Ogura, F. Chem. Lett. 1987, 16, 2339.  doi: 10.1246/cl.1987.2339

    6. [6]

      Yui, K.; Aso Y.; Otsubo, T.; Ogura, F. Bull. Chem. Soc. Jpn. 1989, 62, 1539.  doi: 10.1246/bcsj.62.1539

    7. [7]

      Yui, K.; Ishida, H.; Aso, Y.; Otsubo T.; Ogura, F.; Kawamoto, A.; Tanaka, J. Bull. Chem. Soc. Jpn. 1989, 62, 1547.  doi: 10.1246/bcsj.62.1547

    8. [8]

      Higuchi, H.; Nakayama, T.; Koyama, H.; Ojima, J.; Wada, T.; Sasabe, H. Bull. Chem. Soc. Jpn. 1995, 68, 2363.  doi: 10.1246/bcsj.68.2363

    9. [9]

      Uno, M.; Seto, K.; Takahashi, S. J. Chem. Soc., Chem. Commun. 1984, 932.

    10. [10]

      Pappenfus, T. M.; Hermanson, B. J.; Helland, T. J.; Lee, G. G. W.; Drew, S. M.; Mann, K. R.; McGee, K. A.; Rasmussen, S. C. Org. Lett. 2008, 10, 1553.  doi: 10.1021/ol8002018

    11. [11]

      Getmanenko, Y. A.; Purcell, T. A.; Hwang, D. K.; Kippelen, B.; Marder, S. R. J. Org. Chem. 2012, 77, 10931.  doi: 10.1021/jo3020006

    12. [12]

      Pappenfus, T. M.; Chesterfield, R. J.; Frisbie, C. D.; Mann, K. R.; Casado, J.; Raff, J. D.; Miller, L. L. J. Am. Chem. Soc. 2002, 124, 4184.  doi: 10.1021/ja025553j

    13. [13]

      Chesterfield, R. J.; Newman, C. R.; Papperfus, T. M.; Ewbank, P. C.; Haukaas, M. H.; Mann, K. R.; Miller, L. L.; Frisbie, C. D. Adv. Mater. 2003, 15, 1278.  doi: 10.1002/adma.200305200

    14. [14]

      Janzen, D. E.; Burand, M. W.; Ewbank, P. C.; Pappenfus, T. M.; Higuchi, H.; Filho, D. A. S.; Young, V. G.; Brédas, J. L.; Mann, K. R. J. Am. Chem. Soc. 2004, 126, 15295.  doi: 10.1021/ja0484597

    15. [15]

      Takahashi, T.; Matsuoka, K.; Takimiya, K.; Otsubo, T.; Aso, Y. J. Am. Chem. Soc. 2005, 127, 8928.  doi: 10.1021/ja051840m

    16. [16]

      Berlin, A.; Grimoldi, S.; Zotti, G.; Osuna, R. M.; Delgado, M. C. R.; Ortiz, R. P.; Casado, J.; Hernández, V.; Navarrete, J. T. L. J. Phys. Chem. B 2005, 109, 22308.  doi: 10.1021/jp054204j

    17. [17]

      Handa, S.; Miyazaki, E.; Takimiya, K.; Kunugi, Y. J. Am. Chem. Soc. 2007, 129, 11684.  doi: 10.1021/ja074607s

    18. [18]

      Wu, Q.-H.; Ren, S.-D.; Wang, M.; Qiao, X.-L.; Li, H.-X.; Gao, X.-K.; Yang, X.-D.; Zhu, D.-B. Adv. Funct. Mater. 2013, 23, 2277.  doi: 10.1002/adfm.201202744

    19. [19]

      Nakano, M.; Osaka, I.; Takimiya, K. J. Mater. Chem. C 2015, 3, 283.  doi: 10.1039/C4TC02164A

    20. [20]

      Yamamoto, K.; Ie, Y.; Nitani, M.; Tohnai, N.; Kakiuchi, F.; Zhang, K.; Pisula, W.; Asadi, K.; Blom, P. W. M.; Aso, Y. J. Mater. Chem. C 2018, 6, 7493.  doi: 10.1039/C8TC01802B

    21. [21]

      Handa, S.; Miyazaki, E.; Takimiya, K. Chem. Commun. 2009, 3919.

    22. [22]

      Kunugi, Y.; Takimiya, K.; Toyoshima, Y.; Yamashita, K.; Aso, Y.; Otsubo, T. J. Mater. Chem. 2004, 14, 1367.  doi: 10.1039/b401209g

    23. [23]

      Qiao, Y.-L.; Zhang, J.; Xu, W.; Zhu, D.-B. J. Mater. Chem. 2012, 22, 5706.  doi: 10.1039/c2jm16700j

    24. [24]

      Xiong, Y.; Tao, J.-W.; Wang, R.-H.; Qiao, X.-L.; Yang, X.-D.; Wang, D.-L.; Wu, H.-Z.; Li, H.-X. Adv. Mater. 2016, 28, 5949.  doi: 10.1002/adma.201600120

    25. [25]

      Qiao, Y.-L.; Guo, Y.-L.; Yu, C.-M.; Zhang, F.-J.; Xu, W.; Liu, Y.-Q.; Zhu, D.-B. J. Am. Chem. Soc. 2012, 134, 4084.  doi: 10.1021/ja3003183

    26. [26]

      Zhong, H.-L.; Smith, J.; Rossbauer, S.; White, A. J. P. Adv. Mater. 2012, 24, 3205.  doi: 10.1002/adma.201200859

    27. [27]

      Wang, C.; Zang, Y.-P.; Qin, Y.-K.; Zhang, Q., Sun, Y.-H.; Di, C.-A.; Xu, W.; Zhu, D.-B. Chem.-Eur. J. 2014, 20, 13755.  doi: 10.1002/chem.201403037

    28. [28]

      Wang, C.; Qin, Y.-K.; Sun, Y.-H.; Guan, Y.-S.; Xu, W.; Zhu, D.-B. ACS Appl. Mater. Interfaces 2015, 7, 15978.  doi: 10.1021/acsami.5b04082

    29. [29]

      Ray, S.; Sharma, S.; Salzner, U.; Patil, S. J. Phys. Chem. C 2017, 121, 16088.  doi: 10.1021/acs.jpcc.7b04085

    30. [30]

      Ren, L.-B.; Yuan, D.-F.; Zhu, X.-Z. Chem.-Asian J. 2019, 14, 1717.  doi: 10.1002/asia.201801737

    31. [31]

      Zhang, C.; Zang, Y.-P.; Gann, E.; McNeill, C. R.; Zhu, X.-Z.; Di, C.-A.; Zhu, D.-B. J. Am. Chem. Soc. 2014, 136, 16176.  doi: 10.1021/ja510003y

    32. [32]

      Zhang, C.; Zang, Y.-P.; Zhang, F.-J.; Diao, Y.; McNeill, C. R.; Di, C.-A.; Zhu, X.-Z.; Zhu, D.-B. Adv. Mater. 2016, 28, 8456.  doi: 10.1002/adma.201602598

    33. [33]

      Zhang, C.; Yuan, D.-F.; Wu, H.; Gann, E.; Thomsen, L.; McNeill, C.-R.; Di, C.-A.; Zhu, X.-Z.; Zhu, D.-B. J. Mater. Chem. C 2017, 5, 1935.

    34. [34]

      Zhang, C.; Rivero, S. M.; Liu, W.-Y.; Casanova, D.; Zhu, X.-Z.; Casado, J. Angew. Chem., Int. Ed. 2019, 58, 11291.  doi: 10.1002/anie.201904153

    35. [35]

      Chonan, T.; Takahashi, K. Bull. Chem. Soc. Jpn. 2004, 77, 1487.  doi: 10.1246/bcsj.77.1487

    36. [36]

      Kozaki, M.; Sugimura, K.; Ohnishi, H.; Okada, K. Org. Lett. 2006, 8, 5235.  doi: 10.1021/ol061985d

    37. [37]

      Kashiki, T.; Miyazaki, E.; Takimiya, K. Chem. Lett. 2009, 38, 568.  doi: 10.1246/cl.2009.568

    38. [38]

      Yanai, N.; Mori, T.; Shinamura, S.; Osaka, I.; Takimiya, K. Org. Lett. 2014, 16, 240.  doi: 10.1021/ol403234q

    39. [39]

      Mori, T.; Yanai, N.; Osaka, I.; Takimiya, K. Org. Lett. 2014, 16, 1334.  doi: 10.1021/ol5000567

    40. [40]

      Wu, Q.-H.; Li, R..; Hong, W.; Li, H.-X.; Gao, X.-K.; Zhu, D.-B. Chem. Mater. 2011, 23, 3138.  doi: 10.1021/cm201326c

    41. [41]

      Li, J.; Qiao, X.-L.; Xiong, Y.; Li, H.-X.; Zhu, D.-B. Chem. Mater. 2014, 26, 5782.  doi: 10.1021/cm502952u

    42. [42]

      Xia, D.-B.; Keerthi, A.; An, C.-B.; Baumgarten, M. Org. Chem. Front. 2017, 4, 18.  doi: 10.1039/C6QO00543H

    43. [43]

      Jiang, H.; Oniwa, K.; Xu, Z. Q.; Bao, M.; Yamamoto, Y.; Jin, T.-N. Bull. Chem. Soc. Jpn. 2017, 90, 789.  doi: 10.1246/bcsj.20170083

    44. [44]

      Suzuki, Y.; Miyazaki, E.; Takimiya, K. J. Am. Chem. Soc. 2010, 132, 10453.  doi: 10.1021/ja103171y

    45. [45]

      Jiang, H.; Zhang, L.; Cai, J.-F.; Ren, J.-H.; Cui, Z.-H.; Chen, W.-G. Dyes Pigm. 2018, 151, 363.  doi: 10.1016/j.dyepig.2018.01.017

    46. [46]

      Ren, L.-B.; Liu, F.; Shen, X.-X.; Zhang, C.; Yi, Y.-P.; Zhu, X.-Z. J. Am. Chem. Soc. 2015, 137, 11294.  doi: 10.1021/jacs.5b03899

    47. [47]

      Huang, C.-B.; Chen, H.; Li, F.-Q; An, S.-Y. Chin. J. Org. Chem. 2019, 39, 2467 (in Chinese).
       

    48. [48]

      Wang, J.-J.; Qi, S.-L.; Du, J.-S.; Yang, Q.-B.; Song, Y.; Li, Y.-X. Chem. J. Chin. Univ. 2019, 40, 1397 (in Chinese).  doi: 10.7503/cjcu20190159

    49. [49]

      Suzuki, Y.; Shimawaki, M.; Miyazaki, E.; Osaka, I.; Takimiya, K. Chem. Mater. 2011, 23, 795.  doi: 10.1021/cm102109p

    50. [50]

      Ishii, A.; Horikawa, Y.; Takaki, I.; Shibata, J.; Nakayama, J.; Hoshino, M. Tetrahedron Lett. 1991, 32, 4313.  doi: 10.1016/S0040-4039(00)92158-0

    51. [51]

      Takeda, T.; Akutagawa, T. J. Org. Chem. 2015, 80, 2455.  doi: 10.1021/acs.joc.5b00021

    52. [52]

      Kawase, T.; Ueno, N.; Oda, M. Tetrahedron Lett. 1992, 33, 5405.  doi: 10.1016/S0040-4039(00)79106-4

    53. [53]

      Bhattacharyya, K.; Dey, D.; Datta, A. J. Phys. Chem. C 2019, 123, 4749.  doi: 10.1021/acs.jpcc.9b00230

    54. [54]

      Mazaki, Y.; Murata, S.; Kobayashi, K. Tetrahedron Lett. 1991, 32, 4367.  doi: 10.1016/S0040-4039(00)92172-5

    55. [55]

      Kawata, S.; Pu, Y. J.; Saito, A.; Kurashige, Y.; Beppu, T.; Katagiri, H.; Hada, M.; Kido, J. Adv. Mater. 2016, 28, 1585.  doi: 10.1002/adma.201504281

    56. [56]

      Takahashi, K.; Suzuki, T. J. Am. Chem. Soc. 1989, 111, 5483.  doi: 10.1021/ja00196a075

    57. [57]

      Kan, Z.-P.; Colella, L.; Canesi, E. V.; Lerario, G.; Kumar, R. S. S.; Bonometti, V.; Mussini, P. R.; Cavallo, G.; Terraneo, G.; Pattanasattayavong, P.; Anthopoulos, T. D.; Bertarelli, C.; Keivanidis, P. E. Sol. Energy Mater. Sol. Cells 2014, 120, 37.  doi: 10.1016/j.solmat.2013.08.007

    58. [58]

      Agostinelli, T.; Caironi, M.; Natali, D.; Sampietro, M.; Dassa, G.; Canesi, E. V.; Bertarelli, C.; Zerbi, G.; Cabanillas-Gonzalez, J.; Silvestri, S. D.; Lanzani, G. J. Appl. Phys. 2008, 104, 114508.  doi: 10.1063/1.3033376

    59. [59]

      Fazzi, D.; Canesi, E. V.; Negri, F.; Bertarelli, C.; Castiglioni, C. ChemPhysChem 2010, 11, 3685.  doi: 10.1002/cphc.201000675

    60. [60]

      Canesi, E. V.; Fazzi, D.; Colella, L.; Bertarelli, C.; Castiglioni, C. J. Am. Chem. Soc. 2012, 134, 19070.  doi: 10.1021/ja3072385

    61. [61]

      Colella, L.; Brambilla, L.; Nardone, V.; Parisini, E.; Castiglioni, C.; Bertarelli, C. Phys. Chem. Chem. Phys. 2015, 17, 10426.  doi: 10.1039/C4CP05748A

    62. [62]

      Francesco, T.; Colella, L.; Maghsoumi, A.; Martí-Rujas, J.; Parisini, E.; Tommasini, M.; Bertarelli, C.; Barbon, A. J. Phys. Chem. C 2016, 120, 5732.

    63. [63]

      Tormos, G. V.; Belmore, K. A.; Cava, M. P. J. Am. Chem. Soc. 1993, 115, 11512.  doi: 10.1021/ja00077a057

    64. [64]

      Hwang, H.; Khim, D.; Yun, J. M.; Jung, E.; Jang, S. Y.; Jang, Y. H.; Noh, Y. Y.; Kim, D. Y. Adv. Funct. Mater. 2015, 25, 1146.  doi: 10.1002/adfm.201402758

    65. [65]

      Ren, L.-B.; Fan, H.-J.; Huang, D.-Z.; Yuan, D.-F.; Di, C.-A.; Zhu, X.-Z. Chem.-Eur. J. 2016, 22, 17136.  doi: 10.1002/chem.201603112

    66. [66]

      Deng, Y.-F.; Sun, B.; Quinn, J.; He, Y.-H.; Ellard, J.; Guo, C.; Li, Y.-N. RSC Adv. 2016, 6, 45410.  doi: 10.1039/C6RA06316K

    67. [67]

      Deng, Y.-F.; Quinn, J.; Sun, B.; He Y.-H.; Ellard, J.; Li, Y.-N. RSC Adv. 2016, 6, 34849.  doi: 10.1039/C6RA03221D

    68. [68]

      Deng, Y.-F.; Sun, B.; He, Y.-H.; Quinn, J.; Guo, C.; Li, Y.-N. Angew. Chem., Int. Ed. 2016, 55, 3459.  doi: 10.1002/anie.201508781

    69. [69]

      Kozaki, M.; Isoyama, A.; Akita, K.; Okada, K. Org. Lett. 2005, 7, 115.  doi: 10.1021/ol0476927

    70. [70]

      Kozaki, M.; Isoyama, A.; Okada, K. Tetrahedron Lett. 2006, 47, 5375.  doi: 10.1016/j.tetlet.2006.05.084

    71. [71]

      Ay, E.; Furukawa, S.; Nakamura, E. Org. Chem. Front. 2014, 1, 988.  doi: 10.1039/C4QO00182F

    72. [72]

      Rudebusch, G. E.; Fix, A. G.; Henthorn, H. A.; Vonnegut, C. L.; Zakharov, L. N.; Haley, M. M. Chem. Sci. 2014, 5, 3627.  doi: 10.1039/C4SC01432D

    73. [73]

      Shi, X.-L.; Burrezo, P. M.; Lee, S.-S.; Zhang, W.-H.; Zheng, B.; Dai, G.-L.; Chang, J.-J.; Navarrete, J. T. L.; Huang, K. W.; Kim, D. H.; Casado, J.; Chi, C. Y. Chem. Sci. 2014, 5, 4490.  doi: 10.1039/C4SC01769B

    74. [74]

      Shi, X.-L.; Lee, S.-S.; Son, M.-J.; Zheng, B.; Chang, J.-J.; Jing, L.-Z.; Huang, K.-W.; Kim, D.-H.; Chi, C.-Y. Chem. Commun. 2015, 51, 13178.  doi: 10.1039/C5CC04243G

    75. [75]

      Shi, X.-L.; Quintero, E.; Lee, S.-S.; Jing, L.-Z.; Herng, T. S.; Zheng, B.; Huang, K. W.; Navarrete, J. T. L.; Ding, J.; Kim, D. H.; Casado, J.; Chi, C.-Y. Chem. Sci. 2016, 7, 3036.  doi: 10.1039/C5SC04706D

    76. [76]

      Tan, J.-H.; Huo, Y.-P.; Cai, N.; Ji, S.-M.; Li, Z.-Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457 (in Chinese).
       

    77. [77]

      Inoue, S.; Mikami, S.; Aso, Y.; Otsubo, T.; Wada, T.; Sasabe, H. Synth. Met. 1997, 84, 395.  doi: 10.1016/S0379-6779(97)80799-0

    78. [78]

      Holzmüller, F.; Gräßler, N.; Sedighi, M.; Müller, E.; Knupfer, M.; Zeika, O.; Vandewal, K.; Koerner, C.; Leo, K. Org. Electron. 2017, 45, 198.  doi: 10.1016/j.orgel.2017.03.009

    79. [79]

      Takahashi, T.; Takimiya, K.; Otsubo, T.; Aso, Y. Org. Lett. 2005, 7, 4313.  doi: 10.1021/ol0513037

    80. [80]

      Guegano, X.; Kanibolotsky, A. L.; Blum, C.; Mertens, S. F. L.; Liu, S. X.; Neels, A.; Hagemann, H.; Skabara, P. J.; Leutwyler, S.; Wandlowski, T.; Hauser, A.; Decurtins, S. Chem.-Eur. J. 2009, 15, 63.  doi: 10.1002/chem.200802011

    81. [81]

      Zhang, Q.-Q.; Jiang, K.-J.; Huang, J.-H.; Zhao, C.-W.; Zhang, L.-P.; Cui, X.-P.; Su, M.-J.; Yang, L.-M.; Song, Y.-L.; Zhou, X.-Q. J. Mater. Chem. A 2015, 3, 7695.  doi: 10.1039/C5TA01348H

    82. [82]

      Gräßler, N.; Wolf, S.; Holzmüller, F.; Zeika, O.; Vandewal, K.; Leo, K. Eur. J. Org. Chem. 2019, 845.

    83. [83]

      Cai, J.-F.; Chen, W.-G.; Cui, Z.-H.; Jiang, H. J. Text. Res. 2018, 39, 81 (in Chinese).

    84. [84]

      Jiang, H.; Hu, Q.; Cai, J.-F.; Cui, Z.-H.; Zheng, J.-H.; Chen, W.-G. Dyes Pigm. 2019, 166, 130.  doi: 10.1016/j.dyepig.2019.03.025

  • 加载中
    1. [1]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    17. [17]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    18. [18]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    19. [19]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    20. [20]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

Metrics
  • PDF Downloads(113)
  • Abstract views(5939)
  • HTML views(1617)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return