Citation: Tian Wanfa, Li Na, Peng Zihe, Feng Lihua, Mai Xi, He Yongqin. Recent Advances in Ligand-Promoted Transition-Metal-Catalyzed Remote meta-C—H Functionalization of Arenes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 625-644. doi: 10.6023/cjoc201909015 shu

Recent Advances in Ligand-Promoted Transition-Metal-Catalyzed Remote meta-C—H Functionalization of Arenes

  • Corresponding author: He Yongqin, heyq12@lzu.edu.cn
  • Received Date: 9 September 2019
    Revised Date: 27 November 2019
    Available Online: 19 December 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 81860610) and the Young Teachers Training Foundation of Nanchang University(No. 4209-16100009-PY201810)the National Natural Science Foundation of China 81860610the Young Teachers Training Foundation of Nanchang University 4209-16100009-PY201810

Figures(50)

  • Ligands can regulate both the steric and electronic effects of the catalytic center in transition-metal-catalyzed C-H activation reactions, leading to the site-selective C-H functionalization of arenes. In recent years, ligand-promoted remote C-H functionalization of arenes has developed rapidly. The recent progress on ligand-promoted transition-metal-catalyzed remote meta-selective C-H bond functionalization of arenes is summarized, and the limitations of the research field and prospects for future development are presented.
  • 加载中
    1. [1]

      For selected reviews on transition metal catalyzed C—H activation, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
      (d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
      (e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
      (f) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236.
      (g) Li, B. J.; Shi, Z. J. Chem. Sci. 2011, 2, 488.
      (h) Fischer, D. F.; Sarpong, R. J. Am. Chem. Soc. 2010, 132, 5926.
      (i) Wang, Y.-C.; Ye, Q.-X.; Qiu, G.-S.; Liu, J.-B. Chin. J. Org. Chem. 2018, 38, 1650 (in Chinese).
      (王玉超, 叶秋香, 邱观音生, 刘晋彪, 有机化学, 2018, 38, 1650.)

    2. [2]

      (a) Engle, M. K.; Mei, T.-S.; Wasa, M.Y.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
      (b) David, L. D.; Stuart, A. M.; Claire, L. M. Chem. Rev. 2017, 117, 8649.

    3. [3]

      Ozdemir, I.; Demir, S.; Çetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156.  doi: 10.1021/ja710276x

    4. [4]

      (a) Berman, A. M.; Lewis, J. C.; Bergmann, R. G.; Ellman, J. A. J. Am. Chem, Soc. 2008, 130, 14926.
      (b) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082.

    5. [5]

      (a) Ren, X. Y.; Wen, P.; Shi, X. K.; Wang, Y. L.; Li, J.; Yang, S. Z.; Yan, H.; Huang, G. S. Org. Lett. 2013, 15, 5194.
      (b) Wen, P.; Li, Y. M.; Zhou, K.; Ma, C.; Lan, X. B.; Ma, C. W.; Huang, G. S. Adv. Synth. Catal. 2012, 354, 2135.

    6. [6]

      Cheng, H.-C.; Lin, J.-L.; Zhang, Y.-F.; Chen, B.; Wang, M. C.; Li, H.; Ma, J.-L. Chin. J. Org. Chem. 2019, 39, 318 (in Chinese).
       

    7. [7]

      Huang, H.-T.; Li, T.; Wang, J.-Z.; Qin, G.-P.; Xiao, T.-B. Chin. J. Org. Chem. 2019, 39, 1511 (in Chinese).
       

    8. [8]

      Jiang, Z.-T.; Wang, B.-Q.; Shi, Z.-J. Chin. J. Chem. 2018, 36, 950.  doi: 10.1002/cjoc.201800223

    9. [9]

      (a) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853.
      (b) Dey, A.; Sinha, S. K.; Achar, T. K.; Maiti, D. Angew. Chem., Int. Ed. 2019, 131, 10934.

    10. [10]

      Leow, D.; Li, G.; Mei, T. S.; Yu, J.-Q. Nature 2012, 486, 518.  doi: 10.1038/nature11158

    11. [11]

      Yang, Y.-F.; Cheng, G.-J.; Liu, P.; Leow, D.; Sun, T.-Y.; Chen, P.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344.  doi: 10.1021/ja410485g

    12. [12]

      Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 18056.  doi: 10.1021/ja410760f

    13. [13]

      Xu, H.-J.; Lu, Y.; Farmer, M. E.; Wang, H.-W.; Zhao, D.; Kang, Y.-S.; Sun, W.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 2200.  doi: 10.1021/jacs.6b13269

    14. [14]

      Xu, H.-J.; Kang, Y.-S.; Shi, H.; Zhang, P.; Chen, Y.-K.; Zhang, B.; Liu, Z.-Q.; Zhao, J. Sun, W.-Y.; Yu, J.-Q.; Lu, Y. J. Am. Chem. Soc. 2019, 141, 76.  doi: 10.1021/jacs.8b11038

    15. [15]

      Deng, Y.; Yu, J. Q. Angew. Chem., Int. Ed. 2015, 54, 888.  doi: 10.1002/anie.201409860

    16. [16]

      Bera, M.; Modak, A.; Patra, T.; Maji, A.; Maiti, D. Org. Lett. 2014, 16, 5760.
       

    17. [17]

      Li, S.; Ji, H.; Cai, L.; Li, G. Chem. Sci. 2015, 6, 5595.  doi: 10.1039/C5SC01737H

    18. [18]

      Li, S.; Cai, L.; Ji, H.; Yang, L.; Li, G. Nat. Commun. 2016, 7, 10443.  doi: 10.1038/ncomms10443

    19. [19]

      Fang, L.; Saint-Denis, T. G.; Taylor, B. L. H.; Ahlquist, S.; Hong, K.; Liu, S.; Han, L.; Houk, K. N.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 10702.  doi: 10.1021/jacs.7b03296

    20. [20]

      Long, Y.; Lei, F.; Li, G. Adv. Synth. Catal. 2017, 359, 2235.  doi: 10.1002/adsc.201700261

    21. [21]

      Maity, S.; Hoque, E.; Dhawa, U.; Maiti, D. Chem. Commun. 2016, 52, 14003.  doi: 10.1039/C6CC07861C

    22. [22]

      Zhang, L.; Zhao, C.; Liu, Y.; Xu, J.; Xu, X.; Jin, Z. Angew. Chem., Int. Ed. 2017, 56, 12245.  doi: 10.1002/anie.201705495

    23. [23]

      Wang, B.; Zhou, Y.; Xu, N.-N.; Xu, X.-F.; Xu, X.-H.; Jin, Z. Org. Lett. 2019, 21, 1885.  doi: 10.1021/acs.orglett.9b00499

    24. [24]

      Xu, J.-C.; Chen, J.-J.; Gao, F.; Xie, S.-G.; Xu, X.-H.; Jin, Z.; Yu, J.-Q. J. Am. Chem. Soc. 2019, 141, 1903.  doi: 10.1021/jacs.8b13403

    25. [25]

      Chu, L.; Shang, M.; Tanaka, K.; Chen, Q.; Pissarnitski, N.; Streckfuss, E.; Yu, J.-Q. ACS Cent. Sci. 2015, 1, 394.

    26. [26]

      Jin, Z.; Chu, L.; Chen, Y.-Q.; Yu, J.-Q. Org. Lett. 2018, 20, 425.

    27. [27]

      Fang, S.-Q; Wang, X.-B.; Yin, F.-C.; Cai, P.; Yang, H.-L.; Kong, L.-Y. Org. Lett. 2019, 21, 1841.  doi: 10.1021/acs.orglett.9b00433

    28. [28]

      Bera, M.; Maji, A.; Sahoo, S. K.; Maiti, D. Angew. Chem., Int. Ed. 2015, 54, 8515.  doi: 10.1002/anie.201503112

    29. [29]

      Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Chem. Sci. 2016, 7, 3147.

    30. [30]

      Modak, A.; Patra, T.; Chowdhury, R.; Raul, S.; Maiti, D. Organometallics 2017, 36, 2418.  doi: 10.1021/acs.organomet.7b00309

    31. [31]

      Bera, M.; Agasti, S.; Chowdhury, R.; Mondal, R.; Pal, D.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 5272.  doi: 10.1002/anie.201701579

    32. [32]

      Bag, S.; Jayarajan, R.; Dutta, U.; Chowdhury, R.; Mondal, R.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 12538.  doi: 10.1002/anie.201706360

    33. [33]

      Bag, S.; Jayarajan, R.; Mondal, R.; Maiti, D. Angew. Chem., Int. Ed. 2017, 56, 3182.  doi: 10.1002/anie.201611360

    34. [34]

      Yang, G.-Q.; Lindovska, P.; Zhu, D.-J.; Kim, J.; Wang, P.; Tang, R.-Y.; Movassaghi, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 10807.  doi: 10.1021/ja505737x

    35. [35]

      Yang, G.-Q.; Zhu, D.-J.; Wang, P.; Tang, R.-Y.; Yu, J.-Q. Chem.-Eur. J. 2018, 24, 3434.  doi: 10.1002/chem.201800105

    36. [36]

      Lee, S.; Lee, H.; Tan, K. L. J. Am. Chem. Soc. 2013, 135, 18778.  doi: 10.1021/ja4107034

    37. [37]

      Mi, R.-J.; Sun, J.; Kuhn, F. E.; Zhou, M.-D.; Xu, Z.-Q. Chem. Commun. 2017, 53, 13209.  doi: 10.1039/C7CC07093D

    38. [38]

      Mi, R.-J.; Sun, Y.-Z.; Wang, J.-Y.; Sun, J.; Xu, Z.; Zhou, M.-D. Org. Lett. 2018, 20, 5126.  doi: 10.1021/acs.orglett.8b01995

    39. [39]

      Bera, M.; Sahoo, S. K.; Maiti, D. ACS Catal. 2016, 6, 3575.  doi: 10.1021/acscatal.6b00675

    40. [40]

      (a) Wang, X.-C.; Gong, W.; Fang, L. Z.; Zhu, R. Y.; Li, S.; Engle, K. M.; Yu, J.-Q. Nature 2015, 519, 334.
      (b) Ye, J.; Lautens, M. Nat. Chem. 2015, 7, 863.
      (c) Della C. N.; Fontana, M.; Motti, E.; Catellani, M. Acc. Chem. Res. 2016, 49, 1389.

    41. [41]

      Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 11574.  doi: 10.1021/jacs.5b08914

    42. [42]

      Dong, Z.; Wang, J. C.; Dong, G. B. J. Am. Chem. Soc. 2015, 137, 5887.  doi: 10.1021/jacs.5b02809

    43. [43]

      (a) Ryabov, A. D.; Yatsimirskii, A. K. Inorg. Chem. 1984, 23, 789.
      (b) Ryabov, A. D. Inorg. Chem. 1987, 26, 1252.

    44. [44]

      Shi, H.; Wang, P.; Suzuki, S.; Farmer, M. E.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 14876.  doi: 10.1021/jacs.6b11055

    45. [45]

      Ding, Q.; Ye, S.; Cheng, G.; Wang, P.; Farmer, M. E.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 417.  doi: 10.1021/jacs.6b11097

    46. [46]

      Wang, P.; Farmer, M. E.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 5125.  doi: 10.1002/anie.201701803

    47. [47]

      Li, G.-C.; Wang, P.; Farmer, M. E.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 6874.  doi: 10.1002/anie.201702686

    48. [48]

      Cheng, G.-L.; Wang, P.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 8183.  doi: 10.1002/anie.201704411

    49. [49]

      Shi, H.; Herron, A. N.; Shao, Y.; Shao, Q.; Yu, J.-Q. Nature 2018, 558, 581.  doi: 10.1038/s41586-018-0220-1

    50. [50]

      Farmer, M. E.; Wang, P.; Shi, H.; Yu, J.-Q. ACS Catal. 2018, 8, 7362.  doi: 10.1021/acscatal.8b01599

    51. [51]

      Ying, C. H.; Yan, S.-B.; Duan, W.-L. Org. Lett. 2014, 16, 500.  doi: 10.1021/ol4033804

    52. [52]

      (a) Ye, M. C.; Gao, G. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 6964.
      (b) Ye, M.; Gao, G. L.; Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19090.

    53. [53]

      Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84.  doi: 10.1021/jacs.5b11683

    54. [54]

      Cong, X. F.; Tang, H. R.; Wu, C.; Zeng, X. M. Organometallics 2013, 32, 6565.  doi: 10.1021/om400890p

    55. [55]

      He, Y. Q.; Wu, Z. Y.; Ma, C. W.; Zhou, X. Q.; Liu, X. X.; Wang, X. J.; Huang, G. S. Adv. Synth. Catal. 2016, 358, 375.  doi: 10.1002/adsc.201500763

    56. [56]

      Wang, P.; Verma, P.; Xia, G.-Q.; Shi, J.; Qiao, J. X.; Tao, S.-W.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature 2017, 551, 489.  doi: 10.1038/nature24632

    57. [57]

      Salamanca, V.; Toledo, A.; Albeniz, A. C. J. Am. Chem. Soc. 2018, 140, 17851.  doi: 10.1021/jacs.8b10680

    58. [58]

      Haines, B. E.; Musaev, D. G. ACS Catal. 2015, 5, 830.  doi: 10.1021/cs5014706

    59. [59]

      Zhang, Z. P.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538.  doi: 10.1038/nature21418

    60. [60]

      Achar, T. K.; Ramakrishna, K.; Pal, T.; Porey, S.; Dolui, P.; Biswas, J. P.; Maiti, D. Chem.-Eur. J. 2018, 24, 17906.  doi: 10.1002/chem.201804351

    61. [61]

      Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. Nat. Chem. 2015, 7, 712.  doi: 10.1038/nchem.2322

    62. [62]

      Davis, H. J.; Mihai, M.; Phipps, R. J. J. Am. Chem. Soc. 2016, 138, 12759.  doi: 10.1021/jacs.6b08164

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    5. [5]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Yuan Yang Jian Zhang Shaomin Shuang . Promoting an All-English Teaching Approach in the Chemistry English Curriculum to Enhance Internationalization. University Chemistry, 2025, 40(5): 238-243. doi: 10.12461/PKU.DXHX202403079

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(25)
  • Abstract views(1982)
  • HTML views(650)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return