Citation: He Zeyu, Fan Min, Xu Jia'neng, Hu Yue, Wang Lu, Wu Xudong, Xia Chungu, Liu Chao. Iron-Catalyzed Deoxygenative Diborylation of Ketones to Internal gem-Diboronates[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3438-3445. doi: 10.6023/cjoc201909008 shu

Iron-Catalyzed Deoxygenative Diborylation of Ketones to Internal gem-Diboronates

  • Corresponding author: Liu Chao, chaoliu@licp.cas.cn
  • Received Date: 6 September 2019
    Revised Date: 18 September 2019
    Available Online: 25 December 2019

    Fund Project: the National Natural Science Foundation of China 21872156the National Natural Science Foundation of China 21673261Project supported by the National Natural Science Foundation of China (Nos. 91745110, 21673261, 21603245, 21633013, 21703265, 21872156, 21802150), the Natural Science Foundation of Jiangsu Province (Nos. BK20181194, BK20180247), the Young Elite Scientist Sponsorship Program by China Association for Science and Technology (No. YESS20170217) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018458)the National Natural Science Foundation of China 91745110the National Natural Science Foundation of China 21703265the National Natural Science Foundation of China 21633013the National Natural Science Foundation of China 21802150the Young Elite Scientist Sponsorship Program by China Association for Science and Technology YESS20170217the Natural Science Foundation of Jiangsu Province BK20181194the Youth Innovation Promotion Association of Chinese Academy of Sciences 2018458the National Natural Science Foundation of China 21603245the Natural Science Foundation of Jiangsu Province BK20180247

Figures(4)

  • An iron catalyzed deoxygenative diborylation of ketones to access a variety of internal gem-diboronates has been developed. A scale-up synthesis of such gem-diboronates is also applicable under this condition. Meanwhile, common organic solvent acetone was used as start material to synthesize corresponding internal gem-diboronate, and further mono- or di-functionalization of such internal gem-diboronate has also been explored to demonstrate the synthetic potential of internal gem-diboronates.
  • 加载中
    1. [1]

      (a) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
      (b) Wu, C.; Wang, J. Tetrahedron Lett. 2018, 59, 2128.
      (c) Zhang, Z.-Q.; Yang, C.-T.; Liang, L.-J.; Xiao, B.; Lu, X.; Liu, J.-H.; Sun, Y.-Y.; Marder, T. B.; Fu, Y. Org. Lett. 2014, 16, 6342.
      (d) Zhang, Z.-Q.; Zhang, B.; Lu, X.; Liu, J.-H.; Lu, X.-Y.; Xiao, B.; Fu, Y. Org. Lett. 2016, 18, 952.
      (e) Sun, W.; Wang, L.; Xia, C.; Liu, C. Angew. Chem., Int. Ed. 2018, 57, 5501.
      (f) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91, 4306.
      (g) Coombs, J. R.; Zhang, L.; Morken, J. P. Org. Lett. 2015, 17, 1708.
      (h) Endo, K.; Hirokami, M.; Shibata, T. J. Org. Chem. 2010, 75, 3469.
      (i) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033.
      (j) Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. J. Org. Chem. 2012, 77, 4826.
      (k) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13, 3368.
      (l) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 10581.
      (m) Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem., Int. Ed. 2016, 55, 9690.
      (n) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed. 2016, 55, 1498.
      (o) Li, H.; Zhang, Z.; Shangguan, X.; Huang, S.; Chen, J.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 11921.
      (p) Matteson, D. S.; Moody, R. J. J. Am. Chem. Soc. 1977, 99, 3196.
      (q) Matteson, D. S.; Moody, R. J. Organometallics 1982, 1, 20.
      (r) Matteson, D. S.; Moody, R. J.; Jesthi, P. K. J. Am. Chem. Soc. 1975, 97, 5608.
      (s) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18, 1210.
      (t) Potter, B.; Edelstein, E. K.; Morken, J. P. Org. Lett. 2016, 18, 3286.
      (u) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918.
      (v) Sun, C.; Potter, B.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 6534.
      (w) Xu, S.; Shangguan, X.; Li, H.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80, 7779.
      (x) Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381.
      (y) Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036.
      (z) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 8503.
      (aa) Kim, J.; Lee, E.; Cho, S. H. Asian J. Org. Chem. 2019, 8, 1664.
      (ab) Lee, H.; Lee, Y.; Cho, S. H. Org. Lett. 2019, 21, 5912.
      (ac) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663.
      (ad) Kim, J.; Cho, S. H. ACS Catal. 2019, 9, 230.
      (ae) Park, J.; Choi, S.; Lee, Y.; Cho, S. H. Org. Lett. 2017, 19, 4054.
      (af) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem., Int. Ed. 2017, 56, 11584.
      (ag) Lee, Y.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed. 2018, 57, 12930.

    2. [2]

      (a) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Chem. Commun. 2018, 54, 13375.
      (b) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Org. Lett. 2019, 21, 393.

    3. [3]

      (a) Zhao, H.; Tong, M.; Wang, H.; Xu, S. Org. Biomol. Chem. 2017, 15, 3418.
      (b) Hwang, C.; Jo, W.; Cho, S. H. Chem. Commun. 2017, 53, 7573.
      (c) Liu, X.; Deaton, T. M.; Haeffner, F.; Morken, J. P. Angew. Chem., Int. Ed. 2017, 56, 11485.

    4. [4]

      (a) Harris, M. R.; Wisniewska, H. M.; Jiao, W.; Wang, X.; Bradow, J. N. Org. Lett. 2018, 20, 2867.
      (b) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
      (c) Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 2249 (in Chinese).
      (刘媛媛, 张万斌, 有机化学, 2016, 36, 2249.)
      (d) Chen, D.; Xu, M.-H. Chin. J. Org. Chem. 2017, 37, 1589 (in Chinese).
      (陈雕, 徐明华, 有机化学, 2017, 37, 1589.)
      (e) Xu, X.; Cheng, R.; Qiu, Z.; Pan, C. Chin. J. Org. Chem. 2018, 38, 3078 (in Chinese).
      (许新彬, 程若飞, 邱早早, 潘成岭, 有机化学, 2018, 38, 3078.)

    5. [5]

      Li, Z.; Wang, Z.; Zhu, L.; Tan, X.; Li, C. J. Am. Chem. Soc. 2014, 136, 16439.  doi: 10.1021/ja509548z

    6. [6]

      Masaki, S.; Michael, S.; Ikuhiro, N.; Katsuhiro, S.; Takuya, K.; Tamejiro, H. Chem. Lett. 2006, 35, 1222.  doi: 10.1246/cl.2006.1222

    7. [7]

      (a) Edelstein, E. K.; Grote, A. C.; Palkowitz, M. D.; Morken, J. P. Synlett 2018, 29, 1749.
      (b) Li, X.; Hall, D. G. Angew. Chem., Int. Ed. 2018, 57, 10304.

    8. [8]

      (a) Palmer, W. N.; Zarate, C.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 2589.
      (b) Zhang, L.; Huang, Z. J. Am. Chem. Soc. 2015, 137, 15600.

    9. [9]

      (a) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96.
      (b) Espinal-Viguri, M.; Woof, C. R.; Webster, R. L. Chem.-Eur. J. 2016, 22, 11605.
      (c) He, T.; Li, B.; Liu, L.-C.; Wang, J.; Ma, W.-P.; Li, G.-Y.; Zhang, Q.-W.; He, W. Chem.-Eur. J. 2019, 25, 966.
      (d) Yukimori, D.; Nagashima, Y.; Wang, C.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2019, 141, 9819.
      (e) Yuma, N.; Naofumi, T. Lett. Org. Chem. 2017, 14, 243.

    10. [10]

      Lee, S.; Li, D.; Yun, J. Chem.-Asian J. 2014, 9, 2440.  doi: 10.1002/asia.201402458

    11. [11]

      (a) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
      (b) Cuenca, A. B.; Cid, J.; García-López, D.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.

    12. [12]

      (a) Abu Ali, H.; Goldberg, I.; Kaufmann, D.; Burmeister, C.; Srebnik, M. Organometallics 2002, 21, 1870.
      (b) Wommack, A. J.; Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163.

    13. [13]

      Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.  doi: 10.1021/jacs.7b02518

    14. [14]

      He, Z.; Zhu, Q.; Hu, X.; Wang, L.; Xia, C.; Liu, C. Org. Chem. Front. 2019, 6, 900.  doi: 10.1039/C9QO00007K

    15. [15]

      Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584.  doi: 10.1038/nchem.1971

    16. [16]

      (a) Bedford, R. B.; Brenner, P. B.; Carter, E.; Gallagher, T.; Murphy, D. M.; Pye, D. R. Organometallics 2014, 33, 5940.
      (b) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128, 11036.
      (c) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem.-Eur. J. 2015, 21, 4257.
      (d) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. J. Am. Chem. Soc. 2008, 130, 5586.
      (e) Zhou, Y.; Wang, H.; Liu, Y.; Zhao, Y.; Zhang, C.; Qu, J. Org. Chem. Front. 2017, 4, 1580.

  • 加载中
    1. [1]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    2. [2]

      Mengyu WuKewei RenChengyu ZouJiacheng ChenRui MaChuan ZhuChao Feng . A general synthesis of gem–difluorobicyclo[2.1.1]hexanes. Chinese Chemical Letters, 2025, 36(5): 110213-. doi: 10.1016/j.cclet.2024.110213

    3. [3]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    6. [6]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    7. [7]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    8. [8]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    9. [9]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    10. [10]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    11. [11]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    12. [12]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    13. [13]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    14. [14]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    17. [17]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    18. [18]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    19. [19]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    20. [20]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

Metrics
  • PDF Downloads(9)
  • Abstract views(643)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return