Citation: Zhang Mengfan, Li Ruipeng, Yang Zhen, Feng Ruokun. Cobalt-Catalyzed Bidentate-Assisted Regioselective C—H Alkoxylation of 1-Naphthylamide with Alcohols[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 714-723. doi: 10.6023/cjoc201908040 shu

Cobalt-Catalyzed Bidentate-Assisted Regioselective C—H Alkoxylation of 1-Naphthylamide with Alcohols

  • Corresponding author: Yang Zhen, fengshenghm@usx.edu.cn Feng Ruokun, 33168466@qq.com
  • Received Date: 30 August 2019
    Revised Date: 21 October 2019
    Available Online: 7 November 2019

    Fund Project: the Shaoxing Science and Technology Plan Project 2018C10017the Zhejiang Provincial Natural Science Foundation LQ15B020002Project supported by the Zhejiang Provincial Natural Science Foundation (No. LQ15B020002) and the Shaoxing Science and Technology Plan Project (No. 2018C10017)

Figures(3)

  • The cobalt-catalyzed regioselective C-H alkoxylation of 1-naphthylamide with alcohols through a bidentate-chelation assistance has been developed. In this transformation, not only primary and secondary alcohols, but also aliphatic diols and oligoethylene glycols, which always be employed as O, O-donor ligands and reducing agents in transition metal catalyzed coupling reaction, were all tolerated under current reaction conditions. It is noteworthy that deuterium labeled 8-alkoxyl-1-N-(naphthalen-1-yl)picolinamide derivative was easily achieved under this catalytic system. In addition, control experiments suggested that picolinoyl was the key directing group, and furthermore, the C(8)-H alkoxylation reaction might proceed through a single-electron-transfer (SET) process.
  • 加载中
    1. [1]

      For the application of functionalized 1-naphthylamine compounds, see: (a) Jurok, R.; Cibulka, R.; Dvořáková, H.; Hampl, F.; Hodačová, J. Eur. J. Org. Chem. 2010, 5217.(b) Jurok, R.; Hodačová, J.; Eigner, V.; Dvořáková, H.; Setnička, V.; Cibulka, R. Eur. J. Org. Chem. 2013, 7724.(c) Zhang, D.; Nadres, E. T.; Brookhart, M.; Daugulis, O. Organometallics 2013, 32, 5136.(d) Dai, S.; Sui, X.; Chen, C. Chem. Commun. 2016, 52, 9113.(e) Lu, M.; Zhou, H.-S.; You, Q.-D.; Jiang, Z. J. Med. Chem. 2016, 59, 7305.(f) Jiang, Z.-Y.; Xu, L.-L.; Lu, M.-C.; Chen, Z.-Y.; Yuan, Z.-W.; Xu, X.-L.; Guo, X.-K.; Zhang, X.-J.; Sun, H.-P.; You, Q.-D. J. Med. Chem. 2015, 58, 6410.(g) Rosen, H.; Hajdu, R.; Silver, L.; Kropp, H.; Dorso, K.; Kohler, J.; Sundelof, J. G.; Huber, J.; Hammond, G. G. Jackson, J. J.; Gill, C. J.; Thompson, R.; Pelak, B. A.; Epstein-Toney, J. H.; Lankas, G.; Wilkening, R. R.; Wildonger, K. J.; Blizzard, T. A.; DiNinno, F. P.; Ratcliffe, R. W.; Heck, J. V.; Kozarich, J. W.; Hammond, M. L. Science 1999, 283, 703.(h) Oh, S.-J.; Hwang, S. J.; Jung, J.; Yu, K.; Kim, J.; Choi, J. Y.; Hartzell, H. C.; Roh, E. J.; Lee, C. J. Mol. Pharmacol. 2013, 84, 726.

    2. [2]

      For selected papers on C2-functionalizations of 1-naphthylamide derivatives, see: (a) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.(b) Kim, B. S.; Jang, C.; Lee, D. J.; Youn, S. W. Chem. Asian J. 2010, 5, 2336.(c) Yip, K.-T.; Yang, D. Org. Lett. 2011, 13, 2134.(d) Wu, Y.; Choy, P. Y.; Mao, F.; Kwong, F. Y. Chem. Commun. 2013, 49, 689.(e) Szabó, F.; Daru, J.; Simkó, D.; Nagy, T. Z.; Stirling, A.; Novák, Z. Adv. Synth. Catal. 2013, 355, 685.(f) Gao, Y.; Huang, Y.; Wu, W.; Huang, K.; Jiang, H. Chem. Commun. 2014, 50, 8370.(g) Iwasaki, M.; Iyanaga, M.; Tsuchiya, Y.; Nishimura, Y.; Li, W.; Li, Z.; Nishihara, Y. Chem.-Eur. J. 2014, 20, 2459.(h) Zhang, X.; Si, W.; Bao M.; Asao, N.; Yamamoto, Y.; Jin, T. Org. Lett. 2014, 16, 4830.(Ⅰ) Das, R.; Kapur, M. J. Org. Chem. 2017, 82, 1114.(j) Li, Z.-L.; Sun, K.-K.; Cai, C. Org. Biomol. Chem. 2018, 16, 5433.

    3. [3]

      For selected papers on C4-functionalizations of 1-naphthylamide derivatives, see: (a) Li, J.-M.; Wang, Y.-H.; Yu, Y.; Wu, R.-B.; Weng, J.; Lu, G. ACS Catal. 2017, 7, 2661.(b) Liang, S.; Bolte, M.; Manolikakes, G. Chem.-Eur. J. 2017, 23, 96.(c) Bai, P.; Sun, S.; Li, Z.; Qiao, H.; Su, X.; Yang, F.; Wu, Y. Wu, Y. J. Org. Chem. 2017, 82, 12119.(d) Han, S.; Liang, A.; Ren, X.; Gao, X.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2017, 58, 4859.(e) You, G. Wang, K.; Wang, X.; Wang, G.; Sun, J.; Duan, G.; Xia, C. Org. Lett. 2018, 20, 4005.(f) Zhu, H.; Sun, S.; Qiao, H.; Yang, F.; Kang, J.; Wu, Y.; Wu, Y. Org. Lett. 2018, 20, 620.

    4. [4]

      (a) Huang, L.; Li, Q.; Wang, C.; Qi, C. J. Org. Chem. 2013, 78, 3030.(b) Nadres, E. T.; Santos, G. I. F.; Shabashov, D.; Daugulis, O. J. Org. Chem. 2013, 78, 9689.

    5. [5]

      (a) Huang, L.; Sun, X.; Li, Q.; Qi, C. J. Org. Chem. 2014, 79, 6720.(b) Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.(c) Rej, S.; Chatani, N. ACS Catal. 2018, 8, 6699.

    6. [6]

      (a) Li, X.; Gong, X.; Zhao, M.; Song, G.; Deng, J.; Li, X. Org. Lett. 2011, 13, 5808.(b) Wang, X.; Li, X.; Xiao, J.; Jiang, Y.; Li, X. Synlett 2012, 23, 1649.

    7. [7]

      (a) Li, Q.; Zhang, S.-Y.; He, G.; Ai, Z.; Nack, W. A.; Chen, G. Org. Lett. 2014, 16, 1764.(b) Li, Z.; Sun, S.; Qiao, H.; Yang, F.; Zhu, Y.; Kang, J.; Wu, Y.; Wu, Y. Org. Lett. 2016, 18, 4594.(c) Pradhan, S.; De, P. B.; Punniyamurthy, T. J. Org. Chem. 2017, 82, 4883.

    8. [8]

      Odani, R.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 11045.  doi: 10.1021/jo402078q

    9. [9]

      (a) Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 11330.(b) Xiong, Y.-S.; Yu, Y.; Weng, J.; Lu, G. Org. Chem. Front. 2018, 5, 982.

    10. [10]

      (a) Guan, D.; Han, L.; Wang, L.; Song, H.; Chu, W.; Sun, Z. Chem. Lett. 2015, 44, 743.(b) Wang, L.; Yang, M.; Liu, X.; Song, H.; Han, L.; Chu, W.; Sun, Z. Appl. Organometal. Chem. 2016, 30, 680.(c) Song, H.; Liu, X.; Wang, C.; Qiao, J.; Chu, W.; Sun, Z. Asian J. Org. Chem. 2017, 6, 1693.

    11. [11]

      Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.  doi: 10.1021/ol402904d

    12. [12]

      Roy, S.; Pradhan, S.; Punniyamurthy, T. Chem. Commun. 2018, 54, 3899.  doi: 10.1039/C8CC02158A

    13. [13]

      (a) Liu, B.; Shi, B.-F. Tetrahedron Lett. 2015, 56, 15.(b) Krylov, I. B.; Vil', V. A.; Terent'ev, A. O. Beilstein J. Org. Chem. 2015, 11, 92.

    14. [14]

      Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.  doi: 10.1021/acscatal.5b02344

    15. [15]

      Wei, D.; Zhu, X.; Niu, J.-L.; Song, M.-P. ChemCatChem 2016, 8, 1242.

    16. [16]

      (a) Cheng, B.; Lu, P.; Zhao, J.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 1704(in Chinese). (程彪, 陆鹏, 赵家金, 陆展, 有机化学, 2019, 39, 1704.)(b) Cheng, Z.; Xing, S.; Guo, J. Chin. J. Chem. 2019, 37, 457.

    17. [17]

      (a) Shao, Z.; Zhong, R.; Ferraccioli, R. Chin. J. Chem. 2019, 37.(b) Gu, Z.; Ji, S. Acta Chim. Sinica 2018, 76, 347(in Chinese). (顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)

    18. [18]

      (a) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-X.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272.(b) Han, J.-N.; Du, C.; Zhu, X.; Wang, Z.-L.; Zhu, Y.; Chu, Z.-Y.; Niu, J.-L.; Song, M.-P. Beilstein J. Org. Chem. 2018, 14, 2090.

    19. [19]

      Lan, J.; Xie, H.; Lu, X.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2017, 19, 4279.  doi: 10.1021/acs.orglett.7b01942

    20. [20]

      Lin, C.; Chen, Z.; Liu, Z.; Zhang, Y. Adv. Synth. Catal. 2018, 360, 519.  doi: 10.1002/adsc.201701144

    21. [21]

      Zhang, T.; Zhu, H.; Yang, F.; Wu, Y.; Wu, Y. Tetrahedron 2019, 75, 1541.  doi: 10.1016/j.tet.2019.02.002

    22. [22]

      Ueno, R.; Natsui, S.; Chatani, N. Org. Lett. 2018, 20, 1062.  doi: 10.1021/acs.orglett.7b04020

    23. [23]

      Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. J. Am. Chem. Soc. 2017, 139, 18452.  doi: 10.1021/jacs.7b11025

    24. [24]

      CCDC 1881977 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

    25. [25]

      (a) Huang, Y.; Liu, L.; Feng, W. ChemistrySelect 2016, 1, 630.(b) Zeng, M.; Du, Y.; Shao, L.; Qi, C.; Zhang, X.-M. J. Org. Chem. 2010, 75, 2556.(c) Liu, Q.; Xu, M.; Wang, Y.; Feng, R.; Yang, Z.; Zuo, S.; Qi, C.; Zeng, M. Int. J. Biol. Macromol. 2017, 105, 575.(d) Zhu, S. L.; Zhang, J. T.; Janjanam, J.; Vegesna, G.; Luo, F. T.; Tiwari, A.; Liu, H. Y. J. Mater. Chem. B 2013, 1, 1722.(e) Hirata, T.; Terai, T.; Komatsu, T.; Hanaoka, K.; Nagano, T. Bioorg. Med. Chem. Lett. 2011, 21, 6090.

    26. [26]

      Zhao, D.; Luo, H.; Chen, B.; Chen, W.; Zhang, G.; Yu, Y. J. Org. Chem. 2018, 83, 7860.  doi: 10.1021/acs.joc.8b00734

    27. [27]

      (a) Guo, X.-K.; Zhang, L.-B.; Wei, D.; Niu, J.-L. Chem. Sci. 2015, 6, 7059.(b) Tan, G.; He, S.; Huang, X.; Liao, X.; Cheng, Y.; You, J. Angew. Chem., Int. Ed. 2016, 55, 10414.(c) Kommagalla, Y.; Yamazaki, K.; Yamaguchi, T.; Chatani, N. Chem. Commun. 2018, 54, 1359.

    28. [28]

      Guo, X.-K.; Zhang, L.-B.; Wei, D.-H.; Niu, J.-L. Chem. Sci. 2015, 6, 7059.  doi: 10.1039/C5SC01807B

  • 加载中
    1. [1]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    2. [2]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    3. [3]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    4. [4]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    5. [5]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    6. [6]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    7. [7]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    8. [8]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    9. [9]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    10. [10]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    11. [11]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    12. [12]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    13. [13]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    14. [14]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    15. [15]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    16. [16]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    17. [17]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    18. [18]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    19. [19]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    20. [20]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

Metrics
  • PDF Downloads(8)
  • Abstract views(873)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return