Citation: Meng Xianjiao, Zhao Jinzhong, Ma Wenbing. Progress in Fluorescent Probes for Cu2+ and Anions, Neutral Molecules Sequential Recognition[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 276-283. doi: 10.6023/cjoc201908039 shu

Progress in Fluorescent Probes for Cu2+ and Anions, Neutral Molecules Sequential Recognition

  • Corresponding author: Meng Xianjiao, 513091702@qq.com
  • Received Date: 28 August 2019
    Revised Date: 19 September 2019
    Available Online: 13 February 2019

    Fund Project: the Shanxi Excellent Doctor Grant Award SXYBKY2019046Project supported by the Shanxi Excellent Doctor Grant Award (No. SXYBKY2019046)

  • The level of copper (Cu) directly affects the normal operation of the living body and the balance of the natural system. Fluorescence chemosensors with high sensitivity and selectivity are more widely used, although there are various methods for detecting copper ions. The research progress of fluorescence chemosensors for sequential recognition of anions S2-, CN-, H2PO4-, PPi and I-, neutral molecules ATP, ADP and biological thiols by "substitution" method based on Cu2+ is reviewed.
  • 加载中
    1. [1]

      Zhu, Y. M.; Wang, Z. L.; Yang, J.; Xu, X.; Wang, S. F.; Cai, Z. C.; Xu, H. J. Chin. J. Org. Chem. 2019, 39, 427 (in Chinese).
       

    2. [2]

      Warrier, S. B.; Kharkar, P. S. J. Lumin. 2018, 199, 407.  doi: 10.1016/j.jlumin.2018.03.073

    3. [3]

      Saravanan, A.; Subashini, G.; Shyamsivappan, S.; Suresh, T.; Kadirvelu, K.; Bhuvanesh, N.; Nandhakumar, R.; Mohan, P. S. J. Photochem. Photobiol., A 2018, 364, 424.  doi: 10.1016/j.jphotochem.2018.06.021

    4. [4]

      Xu, J. B.; Liu, N.; Hao, C. W.; Han, Q. Q.; Duan, Y. L.; Wu, J. Sens. Actuators, B 2019, 280, 129.  doi: 10.1016/j.snb.2018.10.038

    5. [5]

      Hall, K. A.; Jiang, L. W.; Marcus, R. K. J. Anal. At. Spectrom. 2017, 32, 2463.  doi: 10.1039/C7JA00310B

    6. [6]

      Corte Rodríguez, M.; Álvarez-Fernández García, R.; Blanco, E.; Bettmer, J.; Montes-Bayón, M. Anal. Chem. 2017, 89, 11491.  doi: 10.1021/acs.analchem.7b02746

    7. [7]

      Liu, Z. F.; Zhu, Z. L.; Zheng, H. T.; Hu, S. H. Anal. Chem. 2012, 84, 10170.  doi: 10.1021/ac3028504

    8. [8]

      Resano, M.; Aramendía, M.; Belarra, M. A. J. Anal. At. Spectrom. 2014, 29, 2229.  doi: 10.1039/C4JA00176A

    9. [9]

      Murugan, A. S.; Vidhyalakshmi, N.; Ramesh, U.; Annaraj, J. Sens. Actuators, B 2018, 274, 22.  doi: 10.1016/j.snb.2018.07.104

    10. [10]

      Gu, B.; Huang, L. Y.; Xu, Z. F.; Tan, Z.; Hu, M.; Yang, Z. T.; Chen, Y. X.; Peng, C.; Xiao, W. P.; Yu, D. H.; Li, H. T. Sens. Actuators, B 2018, 273, 118.  doi: 10.1016/j.snb.2018.06.032

    11. [11]

      Wang, P.; Fu, J. X.; Yao, K.; Chang, Y. X.; Xu, K. X.; Xu, Y. Q. Sens. Actuators, B 2018, 273, 1070.  doi: 10.1016/j.snb.2018.07.028

    12. [12]

      Huang, X. H.; Li, K. Q.; Wang, X.; Xia, P. Spectrochim. Acta, Part A 2018, 205, 287.  doi: 10.1016/j.saa.2018.07.042

    13. [13]

      Rani, R.; Kumar, G.; Paul, K.; Luxami, V. J. Lumin. 2016, 180, 292.  doi: 10.1016/j.jlumin.2016.08.041

    14. [14]

      Zhang, Y.; Yan, B. Talanta 2019, 197, 291.  doi: 10.1016/j.talanta.2019.01.037

    15. [15]

      Praikaew, P.; Maniam, S.; Charoenpanich, A.; Sirirak, J.; Promarak, V.; Langford, S. J.; Wanichacheva, N. J. Photochem. Photobiol., A 2019, 382, 111852.  doi: 10.1016/j.jphotochem.2019.05.015

    16. [16]

      Roy, S. B.; Rajak, K. K. J. Photochem. Photobiol., A 2017, 332, 505.  doi: 10.1016/j.jphotochem.2016.09.015

    17. [17]

      Zong, L. Y.; Wang, C.; Song, Y. C.; Xie, Y. J.; Zhang, P.; Peng, Q., Li, Q. Q.; Li, Z. Sens. Actuators, B 2017, 252, 1105.  doi: 10.1016/j.snb.2017.07.124

    18. [18]

      Wu, Y. S.; Li, C. Y.; Li, Y. F.; Li, D.; Li, Z. Sens. Actuators, B 2016, 222, 1226.  doi: 10.1016/j.snb.2015.06.151

    19. [19]

      Chen, Y.; Lv, Q.; Liu, Z. Q.; Fang, Q. Inorg. Chem. Commun. 2015, 52, 38.  doi: 10.1016/j.inoche.2014.12.011

    20. [20]

      Liu, L. L.; Dan, F. J.; Liu, W. J.; Lu, X.; Han, Y. L.; Xiao, S. Z.; Lan, H. C. Sens. Actuators, B 2017, 247, 445.  doi: 10.1016/j.snb.2017.03.069

    21. [21]

      More, P. A.; Shankarling, G. S. Sens. Actuators, B 2017, 241, 552.  doi: 10.1016/j.snb.2016.10.121

    22. [22]

      Zhang, B. B.; Liu, H. Y.; Wu, F. X.; Hao, G. F.; Chen, Y. Z.; Tan, C. Y.; Tan, Y.; Jiang, Y. Y. Sens. Actuators, B: Chem. 2017, 243, 765.  doi: 10.1016/j.snb.2016.12.067

    23. [23]

      Fu, Y.; Pang, X. X.; Wang, Z. Q.; Chai, Q.; Ye, F. Spectrochim. Acta, Part A 2019, 208, 198.  doi: 10.1016/j.saa.2018.10.005

    24. [24]

      Dong, J. Y.; Hu, J. F.; Baigude, H.; Zhang, H. Dalton Trans. 2018, 47, 314.  doi: 10.1039/C7DT03982D

    25. [25]

      Fu, Y. L.; Fan, C. B.; Liu, G.; Pu, S. Z. Sens. Actuators, B 2017, 239, 295.  doi: 10.1016/j.snb.2016.08.020

    26. [26]

      Nair, R. R.; Raju, M.; Patel, N. P.; Raval, I. H.; Suresh, E.; Haldar, S.; Chatterjee, P. B. Analyst 2015, 140, 5464.  doi: 10.1039/C5AN00957J

    27. [27]

      Yuan, Y.; Sun, S. G.; Liu, S.; Song, X. W.; Peng, X. J. J. Mater. Chem. B 2015, 3, 5261.  doi: 10.1039/C5TB00423C

    28. [28]

      Huang, Y.; Li, C. F.; Shi, W. J.; Tan, H. Y.; He, Z. Z.; Zheng, L. Y.; Liu, F. G.; Yan, J. W. Talanta 2019, 198, 390.  doi: 10.1016/j.talanta.2019.02.012

    29. [29]

      Saura, A. V.; Burguete, M. I.; Galindo, F.; Luis, S. V. Org. Biomol. Chem. 2017, 15, 3013.  doi: 10.1039/C7OB00274B

    30. [30]

      Yang, C. D.; Gong, D. Y.; Wang, X. D.; Iqbal, A.; Deng, M.; Guo, Y. L.; Tang, X. L.; Liu, W. S.; Qin, W. W. Sens. Actuators, B 2016, 224, 110.  doi: 10.1016/j.snb.2015.10.037

    31. [31]

      Murugan, N.; Prakash, M.; Jayakumar, M.; Sundaramurthy, A.; Sundramoorthy, A. K. Appl. Surf. Sci. 2019, 476, 468.  doi: 10.1016/j.apsusc.2019.01.090

    32. [32]

      Mani, K. S.; Rajamanikandan, R.; Murugesapandian, B.; Shankar, R.; Sivaraman, G.; Ilanchelian, M.; Rajendran, S. P. Spectrochim. Acta, Part A 2019, 214, 170.  doi: 10.1016/j.saa.2019.02.020

    33. [33]

      Mukherjee, S.; Hazra, S.; Chowdhury, S.; Sarkar, S.; Chattopadhyay, K.; Pramanik, A. J. Photochem. Photobiol., A 2018, 364, 635.  doi: 10.1016/j.jphotochem.2018.07.004

    34. [34]

      Mani, S.; Cao, W.; Wu, L. Y.; Wang, R. Nitric Oxide 2014, 41, 62.  doi: 10.1016/j.niox.2014.02.006

    35. [35]

      Yang, L. L.; Wang, J. P.; Yang, L.; Zhang, C.; Zhang, R. L.; Zhang, Z. P.; Liu, B. H.; Jiang, C. L. RSC Adv. 2016, 6, 56384.  doi: 10.1039/C6RA10293J

    36. [36]

      Joo, D. H.; Mok, J. S.; Bae, G. H.; Oh, S. E.; Kang, J. H.; Kim, C. Ind. Eng. Chem. Res. 2017, 56, 8399.  doi: 10.1021/acs.iecr.7b01115

    37. [37]

      Wang, Y. P.; Qiu, D. L.; Li, M. N.; Liu, Y. J.; Chen, H. B.; Li, H. M. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017, 185, 256.  doi: 10.1016/j.saa.2017.05.061

    38. [38]

      Wang, H.; Shi, D. L.; Li, J.; Tang, H. Y.; Li, J.; Guo, Y. Sens. Actuators, B 2018, 256, 600.  doi: 10.1016/j.snb.2017.10.124

    39. [39]

      Subashini, G.; Saravanan, A.; Shyamsivappan, S.; Arasakumar, T.; Mahalingam, V.; Shankar, R.; Mohan, P. S. Inorg. Chim. Acta 2018, 483, 173.  doi: 10.1016/j.ica.2018.08.012

    40. [40]

      Dalbera, S.; Kulovi, S.; Dalai, S. ChemistrySelect 2018, 3, 6561.  doi: 10.1002/slct.201801205

    41. [41]

      Feng, Y.; Yang, Y.; Wang, Y. Z.; Qiu, F. Z.; Song, X. R.; Tang, X. L.; Zhang, G. L.; Liu, W. S. Sens. Actuators, B 2019, 288, 27.

    42. [42]

      Tang, L. J.; Zhou, P.; Zhang, Q.; Huang, Z. L.; Zhao, J.; Cai, M. J. Inorg. Chem. Commun. 2013, 36, 100.  doi: 10.1016/j.inoche.2013.08.011

    43. [43]

      Tang, L. J.; Dai, X.; Wen, X.; Wu, D.; Zhang, Q. Spectrochim. Acta, Part A 2015, 139, 329.  doi: 10.1016/j.saa.2014.12.055

    44. [44]

      Li, C. M.; Liu, Z. X.; Miao, Y.; Zhou, X.; Wu, X. Dyes Pigm. 2016, 125, 292.  doi: 10.1016/j.dyepig.2015.10.039

    45. [45]

      Liu, H. Y.; Wu, F. X.; Zhang, B. B.; Tan, C. Y.; Chen, Y. Z.; Hao, G. F.; Tan, Y.; Jiang, Y. Y. RSC Adv. 2016, 6, 77508.  doi: 10.1039/C6RA15938A

    46. [46]

      Paul, A.; Anbu, S.; Sharma, G.; Kuznetsov, M. L.; Guedes da Silva, M. F. C.; Koch, B.; Pombeiro, A. J. L. Dalton Trans. 2015, 44, 16953.  doi: 10.1039/C5DT02662H

    47. [47]

      Hu, Y. S.; Kang, J.; Zhou, P. P.; Han, X.; Sun, J. Y.; Liu, S. D.; Zhang, L. W.; Fang, J. G. Sens. Actuators, B 2018, 255, 3155.  doi: 10.1016/j.snb.2017.09.140

    48. [48]

      Hou, L. J.; Kong, X. Y.; Wang, Y. S.; Chao, J. B.; Li, C. Z.; Dong, C.; Wang Y.; Shuang, S. M. J. Mater. Chem. B 2017, 5, 8957.  doi: 10.1039/C7TB01596H

    49. [49]

      Parua, S. P.; Sinha, D.; Rajak, K. K. ChemistrySelect 2018, 3, 1120.  doi: 10.1002/slct.201702620

    50. [50]

      Li, J. Z.; Leng, T. H.; Wang, Z. Q.; Zhou, L.; Gong, X. Q.; Shen, Y. J.; Wang, C. Y. J. Photochem. Photobiol., A 2019, 373, 146.  doi: 10.1016/j.jphotochem.2019.01.006

    51. [51]

      Fang, H.; Huang, P. C.; Wu, F. Y. Spectrochim. Acta, Part A 2018, 204, 568.  doi: 10.1016/j.saa.2018.06.068

    52. [52]

      Xu, Z. C.; Chen, X. Q.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127.  doi: 10.1039/B907368J

    53. [53]

      Qu, W. J.; Fang, H.; Huang, Q.; Zhang, Y. M.; Lin, Q.; Yao, H.; Wei, T. B. Chin. J. Org. Chem. 2019, 39, 1226 (in Chinese).
       

    54. [54]

      Miyaji, H.; Sessler, J. L. Angew. Chem., Int. Ed. 2001, 40, 154.  doi: 10.1002/1521-3773(20010105)40:1<154::AID-ANIE154>3.0.CO;2-G

    55. [55]

      Dao, T. C.; Kieu, N. M.; Luong, T. Q. N.; Cao, T. A.; Nguyen, N. H.; Le, V. V. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018, 9, 025006.  doi: 10.1088/2043-6254/aabef8

    56. [56]

      Tsui, Y. K.; Devaraj, S.; Yen, Y. P. Sens. Actuators, B 2012, 161, 510.  doi: 10.1016/j.snb.2011.10.069

    57. [57]

      Tang, L. J.; Wang, N. N.; Zhang, Q.; Guo, J. J.; Nandhakumar, R. Tetrahedron Lett. 2013, 54, 536.  doi: 10.1016/j.tetlet.2012.11.078

    58. [58]

      Tang, L. J.; Zhou, P.; Zhong, K. L.; Hou, S. H. Sens. Actuators, B 2013, 182, 439.  doi: 10.1016/j.snb.2013.03.043

    59. [59]

      Park, G. J.; Hwang, I. H.; Song, E. J.; Kim, H.; Kim, C. Tetrahedron 2014, 70, 2822.  doi: 10.1016/j.tet.2014.02.055

    60. [60]

      Wu, C. J.; Wang, J. B.; Shen, J. J.; Zhang, C. Y.; Wu, Z. Y.; Zhou, H. W. Tetrahedron 2017, 73, 5715.  doi: 10.1016/j.tet.2017.08.010

    61. [61]

      Zheng, Z. B.; Huang, Q. Y.; Han, Y. F.; Zuo, J.; Ma, Y. N. Sens. Actuators, B 2017, 253, 203.  doi: 10.1016/j.snb.2017.06.145

    62. [62]

      Li, Z. L.; Acharya, R.; Wang, S. S.; Schanze, K. S. J. Mater. Chem. C 2018, 6, 3722.  doi: 10.1039/C7TC05081J

    63. [63]

      Wang, W.; Wu, M.; Liu, H. M.; Liu, Q. L.; Gao, Y.; Zhao, B. Tetrahedron Lett. 2019, 60, 1631.  doi: 10.1016/j.tetlet.2019.05.015

    64. [64]

      Wu, Y.; Zhang, Y.; Wu, J. J.; Zhou, J.; Liu, H.; Tu, T. Chin. J. Org. Chem. 2018, 38, 705 (in Chinese).
       

    65. [65]

      Chang, Y. X.; Li, B.; Guo, M.; Cai, Y. H.; Xu, K. X. Chin. J. Org. Chem. 2019, 39, 2485 (in Chinese).
       

    66. [66]

      Gomathi, A.; Vasanthi, M.; Viswanthamurthi, P.; Suresh, S.; Nandhakumar, R. ChemistrySelect 2018, 3, 11809.  doi: 10.1002/slct.201802233

    67. [67]

      Meng, X. J.; Li, S. L.; Ma, W. B.; Wang, J. L.; Hu, Z. Y.; Cao, D. L. Dyes Pigm. 2018, 154, 194.  doi: 10.1016/j.dyepig.2018.03.002

    68. [68]

      Meng, X. J.; Cao, D. L.; Hu, Z. Y.; Han, X. H.; Li, Z. C.; Liang, D.; Ma, W. B. Tetrahedron Lett. 2018, 59, 4299.  doi: 10.1016/j.tetlet.2018.10.048

    69. [69]

      Zhao, C. Y.; Chen, J.; Cao, D. L.; Wang, J. L.; Ma, W. B. Tetrahedron 2019, 75, 1997.  doi: 10.1016/j.tet.2019.02.024

    70. [70]

      Tang, L. J.; Zhou, P.; Huang, Z. L.; Zhao, J.; Cai, M. J. Tetrahedron Lett. 2013, 54, 5948.  doi: 10.1016/j.tetlet.2013.08.047

    71. [71]

      Zhong, K. L.; Guo, B. F.; Sun, X. H.; Zhou, X.; Zhang, Q.; Tang, L. J.; Zhang, X. R. Chin. J. Org. Chem. 2017, 37, 2002 (in Chinese).
       

    72. [72]

      Qu, W. J.; Yan, G. T.; Ma, X. L.; Wei, T. B.; Lin, Q.; Yao, H.; Zhang, Y. M. Sens. Actuators, B: Chem. 2017, 242, 849.  doi: 10.1016/j.snb.2016.09.173

    73. [73]

      Zhang, S. T.; Li, P. P.; Kou, X. M.; Xiao, D. ChemistrySelect 2018, 3, 10057.  doi: 10.1002/slct.201801215

    74. [74]

      Seo, H.; An, M.; Kim, B. Y.; Choi, J. H.; Helal, A.; Kim, H. S. Tetrahedron 2017, 73, 4684.  doi: 10.1016/j.tet.2017.06.034

    75. [75]

      Kim, B. Y.; Pandith, A.; Cho, C. S.; Kim, H. S. Bull. Korean Chem. Soc. 2019, 40, 163.  doi: 10.1002/bkcs.11663

    76. [76]

      Tan, K. Y.; Li, C. Y.; Li, Y. F.; Fei, J. J.; Yang, B.; Fu, Y. J.; Li, F. Anal. Chem. 2017, 89, 1749.

    77. [77]

      Jiao, S. Y.; Li, K.; Wang, X.; Huang, Z.; Pu, L.; Yu, X. Q. Analyst 2015, 140, 174.  doi: 10.1039/C4AN01615G

    78. [78]

      Ding, A. X.; Shi, Y. D.; Zhang, K. X.; Sun, W.; Tan, Z. L.; Lu, Z. L.; He, L. Sens. Actuators, B 2018, 255, 440.  doi: 10.1016/j.snb.2017.08.037

    79. [79]

      Hu, T. Y.; Na, W. D.; Yan, X.; Su, X. G. Talanta 2017, 165, 194.  doi: 10.1016/j.talanta.2016.09.064

    80. [80]

      Jung, S. H.; Kim, K. Y.; Lee, J. H.; Moon, C. J.; Han, N. S.; Park, S. J.; Kang, D. M.; Song, J. K.; Lee, S. S.; Choi, M. Y.; Jaworski, J.; Jung, J. H. ACS Appl. Mater. Interfaces 2017, 9, 722.  doi: 10.1021/acsami.6b12857

    81. [81]

      Zhu, J. H.; Yu, C.; Chen, Y.; Shin, J.; Cao, Q. Y.; Kim, J. S. Chem. Commun. 2017, 53, 4342.  doi: 10.1039/C7CC01346A

    82. [82]

      Zhang, Y.; Gao, Y. G.; Shi, Y. D.; Tan, L. Q.; Yue, J. S.; Lu, Z. L. Chin. Chem. Lett. 2015, 26, 894.  doi: 10.1016/j.cclet.2015.05.032

    83. [83]

      Gao, Y. G.; Tang, Q.; Shi, Y. D.; Zhang, Y.; Lu, Z. L. Talanta 2016, 152, 438.  doi: 10.1016/j.talanta.2016.02.040

    84. [84]

      Xia, P.; Su, Z. H.; Sun, J. Y.; Li, D. Z.; Huang, X. H. ChemistrySelect 2017, 2, 11620.  doi: 10.1002/slct.201702447

    85. [85]

      Jin, X. L.; Gao, J. K.; Xie, P.; Yu, M. C.; Wang, T.; Zhou, H. W.; Ma, A. J.; Wang, Q.; Leng, X.; Zhang, X. H. Spectrochim. Acta, Part A 2018, 204, 657.  doi: 10.1016/j.saa.2018.06.094

    86. [86]

      Bragoszewski, P.; Wasilewski, M.; Sakowska, P.; Gornicka, A.; Böttinger, L.; Qiu, J.; Wiedemann, N.; Chacinska, A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 7713.  doi: 10.1073/pnas.1504615112

    87. [87]

      Yan, P. P.; Wang, T.; Zhang, D.; Ma, X. X. Chin. J. Org. Chem. 2019, 39, 916 (in Chinese).
       

    88. [88]

      Roy, N.; Nazeem, P. A.; Babu, T. D.; Abida, P. S.; Narayanankutty, A.; Valsalan, R.; Valsala, P. A.; Raghavamenon, A. C. Interdiscip. Sci. Comput. Life Sci. 2018, 10, 686.  doi: 10.1007/s12539-017-0227-6

    89. [89]

      Wu, L. L.; Han, H. H.; Liu, L. Y.; Gardiner, J. E.; Sedgwick, A. C.; Huang, C. S.; Bull, S. D.; He, X. P.; James, T. D. Chem. Commun. 2018, 54, 11336.  doi: 10.1039/C8CC06917D

    90. [90]

      Geng, P. L.; Yao, J.; Zhu, Y. F. Mol. Biol. Rep. 2014, 41, 2299.  doi: 10.1007/s11033-014-3083-z

    91. [91]

      Kim, Y. S.; Park, G. J.; Lee, S. A.; Kim, C. RSC Adv. 2015, 5, 31179.  doi: 10.1039/C5RA00544B

    92. [92]

      You, G. R.; Lee, J. J.; Choi, Y. W.; Lee, S. Y.; Kim, C. Tetrahedron 2016, 72, 875.  doi: 10.1016/j.tet.2015.12.064

    93. [93]

      Singh, Y.; Arun, S.; Singh, B. K.; Dutta, P. K.; Ghosh, T. RSC Adv. 2016, 6, 80268.  doi: 10.1039/C6RA15458A

    94. [94]

      Shen, Y. M.; Zhang, X. Y.; Zhang, C. X.; Zhang, Y. Y.; Jin, J. L.; Li, H. T. Spectrochim. Acta, Part A 2018, 191, 427.  doi: 10.1016/j.saa.2017.09.069

    95. [95]

      Kumar, V.; Kumar, A.; Diwan, U.; Singh, M. K.; Upadhyay, K. K. Bull. Chem. Soc. Jpn. 2016, 89, 754.  doi: 10.1246/bcsj.20150427

    96. [96]

      Fu, Z. H.; Yan, L. B.; Zhang, X. L.; Zhu, F. F.; Han, X. L.; Fang, J. G.; Wang, Y. W.; Peng, Y. Org. Biomol. Chem. 2017, 15, 4115.  doi: 10.1039/C7OB00525C

    97. [97]

      Zhang, M. Z.; Han, H. H.; Zhang, S. Z.; Wang, C. Y.; Lu, Y. X.; Zhu, W. H. J. Mater. Chem. B 2017, 5, 8780.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    12. [12]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    18. [18]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(18)
  • Abstract views(3679)
  • HTML views(664)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return