Citation: Zhang Shiju, Li Xiaotong, Wang Yan, Zheng Yucong, Han Shiqing, Yu Huilei, Huang Shahua. Formal Synthesis of Gram-Negative Antibiotic Negamycin[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 521-527. doi: 10.6023/cjoc201908025 shu

Formal Synthesis of Gram-Negative Antibiotic Negamycin

  • Corresponding author: Wang Yan, wangyan@sippe.ac.cn Han Shiqing, hanshiqing@njtech.edu.cn Huang Shahua, shahua@sit.edu.cn
  • Received Date: 16 August 2019
    Revised Date: 10 October 2019
    Available Online: 25 February 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21402121) and the Shanghai Science and Technology Commission for the Shanghai Sailing Program (No. 16YF1414400)the Shanghai Science and Technology Commission for the Shanghai Sailing Program 16YF1414400the National Natural Science Foundation of China 21402121

Figures(4)

  • Negamycin is a potent gram-negative antibiotic. By using commercial available ethyl 4-chlorobutyrate as starting material, the formal synthesis of negamycin was achieved within 8 steps and 29% overall yield. This modified synthetic route features in-situ enzymatic promoted asmmetric reduction reaction to introduce chiral hydroxy group at C-5, a late-stage azidination at C-6 to avoid the introduction of explosive azide group in the early stage in previous syntheses. The C-3 aza-chiral center was constructed via Ellman reagent-based asymmetric Mannich reaction. This efficient route is scalable and suitable to establish a library of negamycin analogues for future high-throughput screening.
  • 加载中
    1. [1]

      (a) Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis, World Health Organization, Geneva, 2017 (WHO/EMP/IAU/ 2017.12). License: CCBY-NC-SA 3.0 IGO.
      (b) Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat. Rev. Drug Discovery 2007, 6, 29.

    2. [2]

      (a) Kupferschmidt, K. Science 2016, 352, 758.
      (b) Liu, Y.; Li, R.; Xiao, X.; Wang, Z. Crit. Rev. Microbiol. 2019, 45, 301.

    3. [3]

      World Health Organization WHO Annual Report on Global Priority List of Antibiotic-Resistant Bacteria, 2017.

    4. [4]

      (a) Hamada, M.; Takeuchi, T.; Kondo, S.; Ikeda, Y.; Naganawa. H. J. Antibiot. 1970, 23, 170.
      (b) Kondo, S.; Shibahara, S.; Takahashi, S.; Maeda, K.; Umezawa, H. J Am Chem Soc. 1971, 93, 6305.

    5. [5]

      (a) Uehara, Y.; Hori, M.; Umezawa, H. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1974, 374, 82.
      (b) Uehara, Y.; Hori, M.; Umezawa, H. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1976, 447, 406.
      (c) Uehara, Y.; Hori, M.; Umezawa, H. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1976, 442, 251.
      (d) Mizuno, S.; Nitta, K.; Umezawa, H. J. Antibiot. 1970, 23, 589.
      (e) Mizuno, S.; Nitta, K.; Umezawa, H. J. Antibiot. 1970, 23, 581.

    6. [6]

      (a) Arakawa, M.; Shiozuka, M.; Nakayama Y.; Hara, T.; Hamada, M.; Kondo, A.; Ikeda, D.; Takahashi, Y.; Sawa, R.; Nonomura, Y.; Sheykholeslami, K.; Kondo, K.; Kaga, K.; Suzuki-Miyagoe, Y.; Takeda, S.; Matsuda, R. J. Biochem. 2003, 134, 751.
      (b) Allamand, V.; Bidou, L.; Arakawa, M.; Floquet, C.; Shiozuka, M.; Paturneau-Jouas, M.; Gartioux, C.; Butler-Browne, G. S.; Mouly, V.; Rousset, J.-P.; Matsuda, R.; Ikeda, D.; Guicheney, P. J. Gene Med. 2008, 10, 217.
      (c) Taguchi, A.; Nishiguchi, S.; Shiozuka, M.; Nomoto, T.; Ina, M.; Nojima, S.; Matsuda, R.; Nonomura, Y.; Kiso, Y.; Yamazaki, Y.; Yakushiji, F.; Hayashi, Y. ACS Med. Chem. Lett. 2012, 3, 118.
      (d) Taguchi, A.; Hamada, K.; Hayashi, Y. J. Antibiot. 2018, 71, 205.

    7. [7]

      Select asymmetric synthesis literature:
      (a) Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am. Chem. Soc. 1972, 94, 4353.
      (b) Masters, J. J.; Hegedus, L. S. J. Org. Chem. 1993, 58, 4547.
      (c) Davies, S. G.; Ichihara, O. Tetrahedron: Asymmetry 1996, 7, 1919.
      (d) Olivier, N. B.; Altman, R. B.; Noeske, J.; Basarab, G. S.; Code, E.; Ferguson, A. D.; Gao, N.; Huang, J.; Juette, M. F.; Livchak, S.; Miller, M. D.; Prince, D. B.; Cate, J. H. D.; Buurman, E. T.; Blanchard, S. C. Proc. Natl. Acad. Sci. 2014, 111, 16274.
      (e) For a recent summary about the total synthesis of negamycin, see: Zhu, L.; Hong, R. Tetrahedron Lett. 2018, 59, 2112.

    8. [8]

      (a) Kondo, S.; Iinuma, K.; Yoshida, K.; Yokose, K.; Ikeda, Y.; Shimazaki, M.; Umezawa, H. J. Antibiot. 1976, 29, 208.
      (b) Uehara, Y.; Hori, M.; Kondo, S.; Hamada, M.; Umezawa, H. J. Antibiot. 1976, 29, 937.
      (c) Raju, B.; Mortell, K.; Anandan, S.; O'Dowd, H.; Gao, H.; Gomez, M.; Hackbarth, C.; Wu, C.; Wang, W.; Yuan, Z.; White, R.; Trias, J.; Patel, D. V. Bioorg. Med. Chem. Lett. 2003, 13, 2413.
      (d) Raju, B.; Anandan, S.; Gu, S.; Herradura, P.; O'Dowd, H.; Kim, B.; Gomez, M.; Hackbarth, C.; Wu, C.; Wang, W.; Yuan, Z.; White, R.; Trias, J.; Patel, D. V. Bioorg. Med. Chem. Lett. 2004, 14, 3103.
      (e) McKinney, D. C.; Basarab, G. S.; Cocozaki, A. I.; Foulk, M. A.; Miller, M. D.; Ruvinsky, A. M.; Scott, C. W.; Thakur, K.; Zhao, L.; Buurman, E. T.; Narayan, S. ACS Med. Chem. Lett. 2015, 6, 930.
      (f) Schmidt, U.; Stäbler, F.; Lieberknecht, A. Synthesis 1992, 482.

    9. [9]

      Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am. Chem. Soc. 1972, 94, 4353.  doi: 10.1021/ja00767a059

    10. [10]

      Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.  doi: 10.1021/jo982059i

    11. [11]

      Ma, H. M.; Yang, L. L.; Ni, Y.; Zhang, J.; Li, C. X.; Zheng, G. W.; Yang, H. Y.; Xu, J. H. Adv. Synth. Catal. 2012, 354, 1765.

    12. [12]

      (a) Reetz, M. T.; Li, X. G. J. Am. Chem. Soc. 2006, 128, 1044.
      (b) Ohkuma, T.; Tsutsumi, K.; Utsumi, N.; Arai, N.; Noyori, R.; Murata, K. Org. Lett. 2007, 9: 255.

    13. [13]

    14. [14]

      Müller, M. Angew. Chem., Int. Ed. 2005, 44, 362.  doi: 10.1002/anie.200460852

    15. [15]

      Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.  doi: 10.1021/jo982059i

    16. [16]

      (a) Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819.
      (b) Siegel C.; Thornton, E. R. J. Am. Chem. Soc. 1989, 111, 5722.
      (c) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600.

    17. [17]

      Makino, K.; Jiang, H.; Suzuki, T.; Hamada, H. Tetrahedron: Asymmetry 2006, 17, 1644.  doi: 10.1016/j.tetasy.2006.06.004

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    3. [3]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    4. [4]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    5. [5]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(20)
  • Abstract views(2535)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return