Citation: Xu Peng, Duan Xinhong. Recent Progress in the Suzuki-Miyaura Cross-Coupling Reactions in Water[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3315-3327. doi: 10.6023/cjoc201908020 shu

Recent Progress in the Suzuki-Miyaura Cross-Coupling Reactions in Water

  • Received Date: 12 August 2019
    Revised Date: 10 October 2019
    Available Online: 13 December 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21671021)the National Natural Science Foundation of China 21671021

Figures(34)

  • Transition-metal-catalyzed Suzuki-Miyaura cross-coupling is one of the most powerful transformations for C-C biaryl bond formation at present. With the increasing demand for green chemistry, water as solvent for the Suzuki-Miyaura cross-coupling reactions has been of widespread interest. The literature in recent years on the Suzuki-Miyaura cross-coupling reactions by heterogeneous or homogeneous catalysis in water is reviewed, and their perspectives for further developments are also presented.
  • 加载中
    1. [1]

      (a) Hirner, J. J.; Shi, Y.; Blum, S. A. Accounts Chem. Res. 2011, 44, 603.
      (b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
      (c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
      (d) Molnár, Á. Chem. Rev. 2011, 111, 2251.
      (e) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270.
      (f) Valente, C.; Calimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem. Int. Ed. 2012, 51, 3314.
      (g) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet, M.; Gosmini, C.; Wangelin, A. J. Chem.-Eur. J. 2014, 20, 6828.
      (g) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet, M.; Gosmini, C.; Wangelin, A. J. Chem.-Eur. J. 2014, 20, 6828.
      (h) Pan, C.; Liu, M.; Duan, X. Chin. J. Org. Chem. 2015, 35, 472(in Chinese).
      (潘春娇, 刘敏, 段新红, 有机化学, 2015, 35, 472.)

    2. [2]

      Miyaura, N.; Yanagi, T.; Suzuki, A. Synth Commun. 1981, 513.
       

    3. [3]

      [(a) Shaughnessy, K. H.; Booth, R. S. Org. Lett. 2001, 3, 2757.
      (b) Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173.
      (c) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6723.
      (d) Ge, S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 12837.
      (e) Mondal, M.; Bora, U. Green Chem. 2012, 14, 1873.
      (f) Ramgren, S. D.; Hie, L.; Ye, Y.; Garg, N. K. Org. Lett. 2013, 15, 3950.
      (g) Molander, G. A.; Argintaru, O. A. Org. Lett. 2014, 16, 1904.

    4. [4]

      [(a) Ennis, D. S.; McManus, J.; Wood-Kaczmar, W.; Richardson, J.; Smith, G. E.; Carstairs, A. Org. Process Res. Dev. 1999, 3, 248.
      (b) Zhou, S.-L.; Xu, L.-W.; Xia, C.-G.; Li, J.-W.; Li, F.-W. Chin. J. Org. Chem. 2004, 24, 1501(in Chinese).
      (周少林, 徐利文, 夏春谷, 李经纬, 李福伟, 有机化学, 2004, 24, 1501.)
      (c) Jiang, H.; Zhang, M.; Zhang, L.; Chen Y.; Zhu, N.; Song, L.; Deng, H. Chin. J. Org. Chem. 2017, 37, 2399(in Chinese).
      (蒋海芳, 张敏, 张丽, 陈雅丽, 朱宁, 宋力平, 邓红梅, 有机化学, 2017, 37, 2399.)

    5. [5]

      (a) Engberts, J. B. F. N.; Blandamer, M. J. Chem. Commun. 2001, 18, 1701.
      (b) Sinou, D. Adv. Synth. Catal. 2002, 344, 221.
      (c) Klijn, J. E.; Engberts, J. B. F. N. Nature 2005, 435, 746.
      (d) Li, C. J. Chem. Rev. 2005, 105, 3095.
      (e) Shaughnessy, K. H.; DeVasher, R. B. Curr. Org. Chem. 2005, 9, 585.
      (f) Li, C. J., Chen, L. Chem. Soc. Rev. 2006, 35, 68.
      (g) Zhang, J.; Yin, H.; Han, S. Chin. J. Org. Chem. 2012, 32, 1429(in Chinese).
      (张敬先, 殷慧清, 韩世清, 有机化学, 2012, 32, 1429.)

    6. [6]

      Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. ChemSusChem 2010, 3, 502.  doi: 10.1002/cssc.200900221

    7. [7]

      (a) Maluenda, I.; Navarro, O. Molecules 2015, 20, 7528.
      (b) Chatterjee, A.; Ward, T. R. Catal. Lett. 2016, 146, 820.

    8. [8]

      Li, X.; Xu, H.; Zhou, J.; Yan, G.; Zhang, L.; Zhuo, S. Chin. J. Org. Chem. 2018, 38, 1917(in Chinese).
       

    9. [9]

      (a) Joucla, L.; Batail, N.; Djakovitch, L. Adv. Synth. Catal. 2010, 352, 2929.
      (b) Moncea, O.; Poinsot, D.; Fokin, A. A.; Schreiner, P. R.; Hierso, J.-C. ChemCatChem 2018, 10, 2915.
      (c) Ge, C.; Sang, X.; Yao, W.; Zhang, L.; Wang, D. Green Chem. 2018, 20, 1805.
      (d) Xu, Z.; Yu, X.; Sang, X.; Wang, D. Green Chem. 2018, 20, 2571.
      (e) Ye, D.; Huang, R.; Zhu, H.; Zou, L.-H.; Wang, D. Org. Chem. Front. 2019, 6, 62.
      (f) Ye, D.; Pan, L.; Zhu, H.; Jin, L.; Miao, H.; Wang, D. Mater. Chem. Front. 2019, 3, 216.
      (g) Qiu, Y.; Zhang, Y.; Jin, L.; Pan, L.; Du, G.; Ye, D.; Wang, D. Org. Chem. Front. 2019, 6, 3420.
      (h) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.
      (i) Yang, Q.; Zhang, Y.; Zeng, W.; Duan, Z.-C.; Sang, X.; Wang, D. Green Chem. 2019, 21, 5683.

    10. [10]

      Gogoi, N.; Bora, U.; Borah, G.; Gogoi P. K. Appl. Organomet. Chem. 2016, e3686.
       

    11. [11]

      Shabbir, S.; Lee, S.; Lim, M.; Lee, H.; Ko, H.; Lee, Y.; Rhee, H. J. Organomet. Chem. 2017, 846, 296.  doi: 10.1016/j.jorganchem.2017.07.003

    12. [12]

      Chen, J.; Zhang, J.; Zhu, D.; Li, T. Appl. Organomet. Chem. 2018, 32, e3996.  doi: 10.1002/aoc.3996

    13. [13]

      Rathod, P. V.; Jadhav, V. H. Tetrahedron Lett. 2017, 58, 1006.  doi: 10.1016/j.tetlet.2017.01.093

    14. [14]

      Rostamnia, S.; Doustkhah, E.; Zeynizadeh, B. Microporous Mesoporous Mater. 2016, 222, 87.  doi: 10.1016/j.micromeso.2015.09.045

    15. [15]

      Destito, P.; Sousa-Castillo, A.; Couceiro, J. R.; López, F.; Correa-Duarte, M. A.; Mascareñas, J. L. Chem. Sci. 2019, 10, 2598  doi: 10.1039/C8SC04390F

    16. [16]

      Kim, Y.-O.; You, J. M.; Jang, H.-S.; Choi, S. K.; Jung, B. Y.; Kang, O.; Kim, J. W.; Lee, Y.-S. Tetrahedron Lett. 2017, 58, 2149.  doi: 10.1016/j.tetlet.2017.04.062

    17. [17]

      Holzer, C.; Dupé, A.; Peschel, L. M.; Belaj, F.; Mösch-Zanetti, N. C. Eur. J. Inorg. Chem. 2018, 568.
       

    18. [18]

      Mandegani, Z.; Asadi, M.; Asadi, Z. Appl. Organomet. Chem. 2016, 30, 657.  doi: 10.1002/aoc.3486

    19. [19]

      Paul, D.; Rudra, S.; Rahman, P.; Khatua, S.; Pradhan, M.; Chatterjee, P. N. J. Organomet. Chem. 2018, 871, 96.  doi: 10.1016/j.jorganchem.2018.06.016

    20. [20]

      Ghorbani-Choghamarani, A.; Tahmasbi, B.; Moradi P. Appl. Organomet. Chem. 2016, 30, 422.  doi: 10.1002/aoc.3449

    21. [21]

      Dadras, A.; Naimi-Jamal, M. R.; Moghaddam, F. M.; Ayati, S. E. Appl. Organomet. Chem. 2018, 32, e3993.  doi: 10.1002/aoc.3993

    22. [22]

      (a) Ni, C.; Shen, A.; Cao, Y.; Ye, X. Chin. J. Org. Chem. 2014, 34, 278(in Chinese).
      (倪晨, 沈安, 曹育才, 叶晓峰, 有机化学, 2014, 34, 278.)
      (b) Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. Chem. Rev. 2018, 118, 9843.

    23. [23]

      Mondal, M.; Joji, J.; Choudhury, J. J. Chem. Sci. 2018, 130, 83.  doi: 10.1007/s12039-018-1487-3

    24. [24]

      Mpungose, P. P.; Sehloko, N. I.; Maguire, G. E.; Friedrich, H. B. New J. Chem. 2017, 41, 13560.  doi: 10.1039/C7NJ02759A

    25. [25]

      (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (b) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676(in Chinese).
      (王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35, 676.)
      (c) Guo, N.; Zhu, S. Chin. J. Org. Chem. 2015, 35, 1383(in Chinese).
      (郭娜, 朱守非, 有机化学, 2015, 35, 1383.)
      (d) Chen, S.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2534(in Chinese).
      (陈姝琪, 杨文, 姚永祺, 杨新, 邓颖颍, 杨定乔, 有机化学, 2018, 38, 2534.)
      (e) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296(in Chinese).
      (胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
      (f) Liu, N.; Chao, F.; Liu, M.-G.; Huang, N.-Y.; Zou, K.; Wang, L. J. Org. Chem. 2019, 84, 2366.
      (g) Liu, M.-G.; Liu, N.; Xu, W.-H.; Wang, L. Tetrahedron 2019, 75, 2748.

    26. [26]

      (a) Jamwal, N.; Gupta, M.; Paul, S. Green Chem. 2008, 10, 999.
      (b) McLaughlin, M. P.; McCormick, T. M.; Eisenberg, R.; Holland, P. L. Chem. Commun. 2011, 47, 7989.
      (c) Lipshutz, B. H.; Isley, N. A.; Moser, R.; Ghorai, S.; Leuser, H.; Taft, B. R. Adv. Synth. Catal. 2012, 354, 3175.
      (d) Debnath, K.; Pathak, S.; Pramanik, A. Tetrahedron Lett. 2013, 54, 4110.
      (e) Yuan, Z.-F.; Zhao, W.-N.; Liu, Z.-P.; Xu, B.-Q. J. Catal. 2017, 353, 37.

    27. [27]

      (a) Chandrasekhar, S.; Narsihmulu, C.; Shameem Sultana, S.; Ramakrishna Reddy, N. Org. Lett. 2002, 4, 4399.
      (b) Feu, K. S.; de la Torre, A. F.; Silva, S.; F de Moraes Junior, M. A.; Corrêa, A. G.; Paixão, M. W. Green Chem. 2014, 16, 3169.
      (c) Tiwari, A. R.; Bhanage, B. M. Green Chem. 2016, 18, 144.
      (d) Xiao, L.; Dai, F.; Li, Z.; Jing, X.; Kong, J.; Liu, G. Chin. J. Org. Chem. 2019, 39, 648(in Chinese).
      (肖立伟, 戴富才, 李政, 景学敏, 孔洁, 刘光仙, 有机化学, 2019, 39, 648.)

    28. [28]

      Chen, C.; Zheng, Q.; Ni, S.; Wang, H. New J. Chem. 2018, 42, 4624.  doi: 10.1039/C7NJ04836J

    29. [29]

      Schroeter, F.; Soellner, J.; Strassner, T. Organometallics 2018, 37, 4267.  doi: 10.1021/acs.organomet.8b00607

    30. [30]

      (a) Shen, H.; Ji, H. Chin. J. Org. Chem. 2011, 31, 791(in Chinese).
      (沈海民, 纪红兵, 有机化学, 2011, 31, 791.)
      (b) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Org. Biomol. Chem. 2012, 10, 4543.
      (c) Yang, Z.; Zhang, X.; Yao, X.; Fang, Y.; Chen, H.; Ji, H. Tetrahedron 2016, 72, 1773.

    31. [31]

      Guo, Y.; Li, J.; Shi, X.; Liu, Y.; Xie, K.; Liu, Y.; Jiang, Y.; Yang, B.; Yang, R. Appl. Organomet. Chem. 2017, 31, e3592.  doi: 10.1002/aoc.3592

    32. [32]

      Khan, R. I.; Pitchumani, K. Green Chem. 2016, 18, 5518.  doi: 10.1039/C6GC01326K

    33. [33]

      Ma, X.; Lv, G.; Cheng, X.; Li, W.; Sang, R.; Zhang, Y.; Wang, Q.; Hai, L.; Wu, Y. Appl. Organomet. Chem. 2017, 31, e3854.  doi: 10.1002/aoc.3854

    34. [34]

      Shahnaz, N.; Puzari, A.; Paul, B.; Das, P. Catal. Commun. 2016, 86, 55.  doi: 10.1016/j.catcom.2016.08.010

    35. [35]

      You, L.-X.; Liu, H.-J.; Cui, L.-X.; Ding, F.; Xiong, G.; Wang, S.-J.; Ren, B.-Y.; Dragutan, L.; Dragutan, V.; Sun, Y.-G. Dalton Trans. 2016, 45, 18455.  doi: 10.1039/C6DT03628G

    36. [36]

      Fiebor, A.; Tia, R.; Makhubela, B. C. E.; Kinfe, H. H. Beilstein J. Org. Chem. 2018, 14, 1859.  doi: 10.3762/bjoc.14.160

    37. [37]

      Ramakrishna, V.; Reddy N. D. Dalton Trans. 2017, 46, 8598.  doi: 10.1039/C7DT01433C

    38. [38]

      Scattolin, T.; Canovese, L.; Visentin, F.; Paganelli, S.; Canton, P.; Demitri, N. Appl. Organomet. Chem. 2017, e4034.
       

    39. [39]

      Lee, J.-Y.; Tzeng, R.-J.; Wang, M.-C.; Lee, H. M. Inorg. Chim. Acta 2017, 464, 74.  doi: 10.1016/j.ica.2017.04.046

    40. [40]

      Qiu, P.; Zhao, J. Y.; Shi, X.; Duan, X. H. New J. Chem. 2016, 40, 6568.  doi: 10.1039/C6NJ00377J

    41. [41]

      Xu, S. D.; Sun, F. Z.; Deng, W. H.; Hao, H.; Duan, X. H. New J. Chem. 2018, 42, 16464.  doi: 10.1039/C8NJ02184H

    42. [42]

      Saito, S.; Sakai, M.; Miyaura, N. Tetrahedron Lett. 1996, 37, 2993.  doi: 10.1016/0040-4039(96)00482-0

    43. [43]

      Handa, S.; Slack, E. D.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2015, 54, 11994.  doi: 10.1002/anie.201505136

    44. [44]

      Gurung, S. K.; Thapa, S.; Kafle, A.; Dickie, D. A.; Giri, R. Org. Lett. 2014, 16, 1264.  doi: 10.1021/ol500310u

    45. [45]

      (a) Wang, L.; Xie, Y.-B.; Huang, N.-Y.; Yan, J.-Y.; Hu, W.-M.; Liu, M.-G.; Ding, M.-W. ACS Catal. 2016, 6, 4010.
      (b) Wang, L.; Xie, Y.-B.; Huang, N.-Y.; Zhang, N.-N.; Li, D.-J.; Hu, Y.-L.; Liu, M.-G.; Lia, D.-S. Adv. Synth. Catal. 2017, 359, 779.

    46. [46]

      Handa, S.; Smith, J. D.; Hageman, M. S.; Gonzalez, M.; Lipshutz, B. H. ACS Catal. 2016, 6, 8179.  doi: 10.1021/acscatal.6b02809

    47. [47]

      Landstrom, E. B.; Handa, S.; Aue, D. H.; Gallou, F.; Lipshutz, B. H. Green Chem. 2018, 20, 3436.  doi: 10.1039/C8GC01356J

    48. [48]

      Patel, N. D.; Rivalti, D.; Buono, F. G.; Chatterjee, A.; Qu, B.; Braith, S.; Desrosiers, J.-N.; Rodriguez, S.; Sieber, J. D.; Haddad, N.; Fandrick, K. R.; Lee, H.; Yee, N. K.; Busacca, C. A.; Senanayake, C. H. Asian J. Org. Chem. 2017, 6, 1285.  doi: 10.1002/ajoc.201700137

    49. [49]

      Mattiello, S.; Rooney, M.; Sanzone, A.; Brazzo, P.; Sassi, M.; Beverina, L. Org. Lett. 2017, 19, 654.  doi: 10.1021/acs.orglett.6b03817

    50. [50]

      Sajith, A. M.; Abdul Khader, K. K.; Muralidharan, A.; Ali Padusha, M. S.; Nagaswarupa, H. P. J. Heterocycl. Chem. 2015, 52, 1748.  doi: 10.1002/jhet.2277

    51. [51]

      Fortun, S.; Beauclair P.; Schmitzer, A. R. RSC Adv. 2017, 7, 21036.  doi: 10.1039/C7RA01197K

    52. [52]

      Kim, S.; Cho, H.-J.; Lee, N.; Lee, Y.-S.; Shin, D.-S.; Lee, S.-M. RSC Adv. 2017, 7, 33162.  doi: 10.1039/C7RA04793B

  • 加载中
    1. [1]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    11. [11]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    15. [15]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    16. [16]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(50)
  • Abstract views(2689)
  • HTML views(718)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return