Citation: Wu Jie, Zhang Xiuli, Zhang Lijun, Wei Yun, Zhou Shuangliu. Synthesis and Catalytic Activity of Dinuclear Rare-Earth Metal Complexes with Nitrogen-Containing Bridged Dipyrrolyl Ligand towards Ring-Opening Polymerization of e-Caprolactone[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 801-805. doi: 10.6023/cjoc201908010 shu

Synthesis and Catalytic Activity of Dinuclear Rare-Earth Metal Complexes with Nitrogen-Containing Bridged Dipyrrolyl Ligand towards Ring-Opening Polymerization of e-Caprolactone

  • Corresponding author: Zhang Lijun, zljun@ahnu.edu.cn Zhou Shuangliu, slzhou@ahnu.edu.cn
  • Received Date: 6 August 2019
    Revised Date: 13 October 2019
    Available Online: 9 November 2019

    Fund Project: Project supported by the National Natural Science Foundation of China Nos. 21672004Project supported by the National Natural Science Foundation of China 21602004Project supported by the National Natural Science Foundation of China (Nos. 21672004, 21602004)

Figures(3)

  • Reaction of RE(CH2SiMe3)3(THF)2 with 1.5 equiv. of (C4H3NHCH2)2NCH3 (1) in toluene gave nitrogen-containing bridged dipyrrolyl dinuclear rare-earth metal complexes[η1:η1:η1-(C4H3NCH2)2NCH3]RE{m-η5:η1:η5:η1:η1-(C4H3NCH2)2N-CH3}RE[η1:η1:η1-(C4H3NCH2)2NCH3](THF)[RE=Y (2), Er (3), Yb (4)]. All complexes were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 2 and 4 were further determined by single-crystal X-ray diffraction. The catalytic properties of rare-earth metal complexes on the ring-opening polymerization of e-caprolactone have been studied.
  • 加载中
    1. [1]

      (a) Müller H. M., Seebach D.Angew. Chem., Int. Ed., 1993, 32: 477.
      (b) Ni Q., Yu L.J. Am. Chem. Soc., 1998, 120: 1645.
      (c) Okada M.Prog. Polym. Sci., 2002, 27: 87.
      (d) Wiegand T., Karr J., Steinkruger J. D., Hiebner K., Simetich B., Beatty M., Redepenning J.Chem. Mater., 2008, 20: 5016.

    2. [2]

      For reviews, see: (a) Shen Q., Yao Y.Chin. J. Org. Chem., 2001, 21: 1018(in Chinese).
      (沈琪, 姚英明, 有机化学,, 2001, 21: 1018.)
      (b) Dechy-Cabaret O., Martin-Vaca B., Bourissou D.Chem. Rev., 2004, 104: 6147
      (c) Wu J. C., Yu T.-L., Chen C.-T., Lin C.-C.Coord. Chem. Rev., 2006, 250: 602.
      (d) Sutar A. K., Maharana T., Dutta S., Chen C.-T., Lin C.-C.Chem. Soc. Rev., 2010, 39: 1724.
      (e) Wei Y., Wang S., Zhou S.Dalton Trans., 2016, 45: 4471.
      (f) Zhao N.Chin. J. Org. Chem., 2017, 37: 1139(in Chinese).
      (赵宁, 有机化学,, 2017, 37: 1139.)

    3. [3]

      (a) Wang, Z; Qi C.Organometallics, 2007, 26: 2243.
      (b) Ko B.-T., Lin C.-C.J. Am. Chem. Soc., 2001, 123: 7973.
      (c) Hsueh M.-L., Huang B.-H., Wu J., Lin C.-C.Macromolecules, 2005, 38: 9482.
      (d) Bhunia M., Vijaykumar G., Adhikari D., Mandal S. K.Inorg. Chem., 2017, 56: 14459.

    4. [4]

      (a) Shueh M.-L., Wang Y.-S., Huang B.-H., Kuo C.-Y., Lin C.-C.Macromolecules, 2004, 37: 5155.
      (b) Sarazin Y., Schormann M., Bochmann M.Organometallics, 2004, 23: 3296.
      (c) Chisholm M. H., Gallucci J. C., Phomphrai K.Inorg. Chem., 2004, 43: 6717.
      (d) Xu X., Chen Y., Zou G., Ma Z., Li G.J. Organomet. Chem., 2010, 695: 1155.
      (e) Huang Y., Wang W., Lin C.-C., Blake M. P., Clark L., Schwarzb A. D., Mountford P.Dalton Trans., 2013, 42: 9313.
      (f) Huang Y., Kou X., Duan Y., Ding F., Yin Y., Wang W., Yang Y.Dalton Trans., 2018, 47: 8121.

    5. [5]

      (a) Duda A., Penczek S.Macromolecules, 1995, 28: 5981.
      (b) Ovitt, T M., Coates G. W.J. Am. Chem. Soc., 1999, 121: 4072.
      (c) Radano C. P., Baker G. L., Smith M. R.J. Am. Chem. Soc., 2000, 122: 1552.
      (d) Liu Y.-C., Ko B.-T., Lin C.-C.Macromolecules, 2001, 34: 6196.
      (e) Gao A., Mu Y., Zhang J., Yao W.Eur. J. Inorg. Chem., 2009, 3613.
      (f) Zhang W., Wang Y., Cao J., Wang L., Pan Y., Redshaw C., Sun W.-H.Organometallics, 2011, 30: 6253.
      (g) Li W., Yao Y., Zhang Y., Shen Q.Chin. J. Chem., 2012, 30: 609.
      (h) Chen L., Li W.Yuan D., Zhang Y., Shen Q., Yao Y.Inorg. Chem., 2015, 54: 4699.
      (i) Hao P.; Yang Z., Li W., Ma X., Roesky H. W., Yang Y., Li J.Organometallics, 2015, 34: 105.
      (j) Wei Y., Wang S., Zhu X., Zhou S., Mu X., Huang Z., Hong D.Organometallics, 2016, 35: 2621.
      (k) Lee C.-L., Lin Y.-F., Jiang M.-T., Lu W.-Y., Vandavasi J. K., Wang L.-F., Lai Y.-C., Chiang M. Y., Chen H.-Y.Organometallics, 2017, 36: 1936.

    6. [6]

      (a) Hannant M. D., Schormann M., Bochmann M.Dalton Trans., 2002, 4071.
      (b) Williams C. K., Breyfogle L. E., Choi S. K., Nam W., Young V. G., Hillmyer M. A., Tolman W. B.J. Am. Chem. Soc., 2003, 125: 11350.
      (c) Chakraborty D., Chen E. Y.-X.Organometallics, 2003, 22: 769.
      (d) Chen H.-Y., Huang B.-H., Lin C.-C.Macromolecules, 2005, 38: 5400.
      (e) Chai Z.-Y., Zhang C., Wang Z.-X.Organometallics, 2008, 27: 1626.
      (f) Zhou S., Jiang Y., Xie T., Wu Z., Zhou L., Xu W., Zhang L., Wang S.Chin. J. Chem., 2012, 30: 2176.
      (g) Ma W.-A.; Wang Z.-X.Organometallics, 2011, 30: 4364.

    7. [7]

      (a) Deshayes G., Mercier F. A. G., Degée P., Verbruggen I. I., Biesemans M., Willem R., Dubois P.Chem. Eur. J., 2003, 9: 4346.
      (b) Bratton D., Brown M., Howdle S. M.Macromolecules, 2005, 38: 1190.
      (c) Dove A. P., Gibson V. C., Marshall E. L., Rzepa H. S., White A. J. P., Williams D. J.J. Am. Chem. Soc., 2006, 128: 9834.
      (d) Chagneux N., Trimaille T., Rollet M., Beaudoin E., Gérard P., Bertin D., Gigmes D.Macromolecules, 2009, 42: 9435.

    8. [8]

      (a) Thomas D., Arndt P., Peulecke N., Spannenberg A., Kempe R., Rosenthal U.Eur. J. Inorg. Chem., 1998, 1351.
      (b) Takeuchi D., Nakamura T., Aida T.Macromolecules, 2000, 33: 725.
      (c) Gowda R. R., Chakraborty D., Ramkumar V.Eur. J. Inorg. Chem., 2009, 2981.
      (d) Zhou F., Lin M., Li L., Zhang X., Chen Z., Li Y., Zhao Y., Wu J., Qian G., Hu B., Li W.Organometallics, 2011, 30: 1283.
      (e) Duan Y., Hu Z., Yang B., Ding F., Wang W., Huang Y., Yang Y.Dalton Trans., 2017, 46: 11259

    9. [9]

      (a) Evans W. J., Katsumata H.Macromolecules, 1994, 27: 2330.
      (b) Nishiura M., Hou Z., Koizumi T., Imamoto T., Wakatsuki Y.Macromolecules, 1999, 32: 8245.
      (c) Kerton F. M., Whitwood A. C., Willans C. E.Dalton Trans., 2004, 2237.
      (d) Sun H., Li H., Yao C., Yao Y., Sheng H., Shen Q.Chin. J. Chem., 2005, 23: 1541
      (e) Huang J., Yu J., Wu G., Sun W., Shen Z.Chin. Chem. Lett., 2009, 20: 1357.
      (f) Clark L., Deacon G. B., Forsyth C. M., Junk P. C., Mountford P., Townley J. P.Dalton Trans., 2010, 39: 6693.
      (g) Wang L., Liang Z., Ni X., Shen Z.Chin. Chem. Lett., 2011, 22: 249.
      (h) Susperregui N., Kramer M. U., Okuda J., Maron L.Organometallics, 2011, 30: 1326.
      (i) Gu Z., Li L., Bao Q., Yuan F.Chin. J. Chem., 2015, 33: 563.

    10. [10]

      (a) Stevels W. M., Ankone M. J. K., Dijkstra P. J., Feijen J.Macromolecules, 1996, 29: 8296.
      (b) Zhang L.-F., Shen Z.-Q., Yu C.-P.Chin. J. Chem., 2003, 21: 1236.
      (c) Wang J., Yao Y., Zhang Y., Shen Q.Inorg. Chem., 2009, 48: 744.
      (d) Wang X., Brosmer J. L., Thevenon A., Diaconescu P. L.Organometallics, 2015, 34: 4700.

    11. [11]

      (a) Zhou S., Wang S., Yang G., Li Q., Zhang L., Yao Z., Zhou Z., Song H.Organometallics, 2007, 26: 3755.
      (b) Yang Y., Li S., Cui D., Chen X., Jing X.Organometallics, 2007, 26, 671.
      (c) Zhang L., Wang Y., Shen L., Zhang T.Chin. J. Chem., 2010, 28: 1019.
      (d) Zhou S., Wu S., Zhu H., Wang S., Zhu X., Zhang L., Yang G., Cui D., Wang H.Dalton Trans., 2011, 40: 9447.

    12. [12]

      (a) Gao W., Cui D., Liu X., Zhang Y., Mu Y.Organometallics, 2008, 27: 5889.
      (b) Yang J., Xu P., Luo Y.Chin. J. Chem., 2010, 28: 457.

    13. [13]

      (a) Iftner C., Bonnet F., Nief F., Visseaux M., Maron L.Organometallics, 2011, 30: 4482.
      (b) Schmid M., Guillaume S. M., Roesky P. W.Organometallics, 2014, 33: 5392.

    14. [14]

      (a) Luo Y., Yao Y., Shen Q., Sun J., Weng L.J. Organomet. Chem., 2002, 662: 144.
      (b) Villiers C., Thuery P., Ephritikhine M. A.Eur. J. Inorg. Chem., 2004, 4624.

    15. [15]

      Stanlake L. J. E., Beard J. D., Schafer L. L.Inorg. Chem., 2008, 47:8062.  doi: 10.1021/ic8010635

    16. [16]

      Zhou S., Yin C., Wang H., Zhu X., Yang G., Wang S.Inorg. Chem. Commun., 2011, 14:1196.  doi: 10.1016/j.inoche.2011.04.015

    17. [17]

      Li Y., Shi Y., Odom A. L.J. Am. Chem. Soc., 2004, 126:1794-.  doi: 10.1021/ja038320g

    18. [18]

      Estler F., Eickerling G., Herdtweck E., Anwander R.Organometallics, 2003, 22:1212.  doi: 10.1021/om020783s

  • 加载中
    1. [1]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    2. [2]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    5. [5]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    6. [6]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    9. [9]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    10. [10]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    11. [11]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    12. [12]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    13. [13]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    14. [14]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    15. [15]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    16. [16]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    19. [19]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(18)
  • Abstract views(787)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return