Citation: Tian Jiameng, Ning Qianqian, Ding Haixin, Bai Jiang, Xiao Qiang. Synthesis of Enzyme Substrate 6-Chloro-4-methylumbelliferyl-α-L-idopyranosiduronic Acid[J]. Chinese Journal of Organic Chemistry, ;2020, 40(1): 215-220. doi: 10.6023/cjoc201908008 shu

Synthesis of Enzyme Substrate 6-Chloro-4-methylumbelliferyl-α-L-idopyranosiduronic Acid

  • Corresponding author: Ding Haixin, dinghaixin_2010@163.com Xiao Qiang, xiaoqiang@tsinghua.org.cn
  • Received Date: 5 August 2019
    Revised Date: 4 September 2019
    Available Online: 25 January 2019

    Fund Project: the Doctor Startup Fund of Jiangxi Science & Technology Normal University 2018BSQD022Project supported by the National Natural Science Foundation of China (Nos. 21676131, 21462019), the Bureau of Science & Technology of Jiangxi Province (No. 20143ACB20012) and the Doctor Startup Fund of Jiangxi Science & Technology Normal University (No. 2018BSQD022)the National Natural Science Foundation of China 21676131the Bureau of Science & Technology of Jiangxi Province 20143ACB20012the National Natural Science Foundation of China 21462019

Figures(6)

  • In order to develop fluorogenic enzyme substrate for quick diaganosis of mucopolysaccharidosis type I, 6-chloro-4-methylumbelliferyl-α-L-idopyranosiduronic acid was synthesized from commercially available D-glucurono-6, 3-lactone. Firstly, 1, 2, 3, 4-tetra-O-acetyl-β-D-glucoronate methyl ester was brominated and subsequently reduced with radical reaction to give 1, 2, 3, 4-tetra-O-acetyl-L-idopyranuronate methyl ester. Then 6-chloro-4-methylumbelliferyl-α-L-idopyra-nosiduronic acid was synthesized using Mitsunobu reaction as the key step. The related structures of key intermediates were confirmed with X-ray crystallography. The preliminary biological test proved that the synthesized enzyme substrate could be used for quick detection of α-L-iduronidase.
  • 加载中
    1. [1]

      (a) Muenzer, J. J. Pediatr. 2004, 144, S27.
      (b) Bach, G.; Friedman, R.; Weissmann, B.; Neufeld, E. F. Proc. Natl. Acad. Sci. U. S. A. 1972, 69, 2048.

    2. [2]

      (a) Galimberti, C.; Madeo, A.; Di Rocco, M.; Fiumara, A. Italian J. Pediatr. 2018, 44.
      (b) Matern, D.; Gavrilou, D.; Oglesbee, D.; Raymond, K.; Rinaldo, P.; Tortorelli, S. Semin. Perinatol. 2015, 39, 206.

    3. [3]

      (a) Burke, H. M.; Gunnlaugsson, T.; Scanlan, E. M. Chem. Commun. 2015, 51, 10576.
      (b) Wysocki, L. M.; Lavis, L. D. Curr. Opin. Chem. Biol. 2011, 15, 752.

    4. [4]

      (a) Weissmann, B.; Santiago, R. Biochem. Biophys. Res. Commun. 1972, 46, 1430.
      (b) Liem, K. O.; Hooghwinkel, G. J. Clin. Chim. Acta 1975, 60, 259.

    5. [5]

      (a) Stirling, J. L.; Robinson, D.; Fensom, A. H.; Benson, P. F.; Baker, J. E.; Button, L. R. Lancet 1979, 2, 37.
      (b) Hopwood, J. J.; Muller, V.; Smithson, A.; Baggett, N. Clin. Chim. Acta 1979, 92, 257.
      (c) Butterworth, J.; Broadhead, D. M. J. Inherited Metab. Dis. 1980, 2, 71.

    6. [6]

      (a) Mandelli, J.; Wajner, A.; Pires, R. F.; Giugliani, R.; Coelho, J. C. Arch. Med. Res. 2002, 33, 20.
      (b) Sista, R. S.; Wang, T.; Wu, N.; Graham, C.; Eckhardt, A.; Winger, T.; Srinivasan, V.; Bali, D.; Millington, D. S.; Pamula, V. K. Clin. Chim. Acta 2013, 424, 12.

    7. [7]

      (a) Perry, J. D.; James, A. L.; Morris, K. A.; Oliver, M.; Chilvers, K. F.; Reed, R. H.; Gould, F. K. J. Appl. Microbiol. 2006, 101, 977.
      (b) Briciu-Burghina, C.; Heery, B.; Regan, F. Analyst 2015, 140, 5953.
      (c) Nasseri, S. A.; Betschart, L.; Opaleva, D.; Rahfeld, P.; Withers, S. G. Angew. Chem., Int. Ed. 2018, 57, 11359.

    8. [8]

      (a) Mohamed, S.; Ferro, V. In Advances in Carbohydrate Chemistry and Biochemistry, Vol. 72, Eds.: Baker, D. C.; Horton, D., 2015, Vol. 72, p. 21.
      (b) Tabeur, C.; Machetto, F.; Mallet, J. M.; Duchaussoy, P.; Petitou, M.; Sinay, P. Carbohydr. Res. 1996, 281, 253.
      (c) Pellissier, H. Org. Prep. Proced. Int. 2002, 34, 441.

    9. [9]

    10. [10]

      (a) Ferrier, R. J.; Tyler, P. C. J. Chem. Soc., Perkin Trans. 1 1980, 2762.
      (b) Mohamed, S.; Krenske, E. H.; Ferro, V. Org. Biomol. Chem. 2016, 14, 2950.

    11. [11]

      (a) Friedman, R. B.; Weissmann, B. Carbohydr. Res. 1972, 24, 123.
      (b) Baggett, N.; Samra, A. K.; Smithson, A. Carbohydr. Res. 1983, 124, 63.

    12. [12]

      Lu, F.-C.; Lico, L. S.; Hung, S.-C. ARKIVOC 2013, 13.

    13. [13]

      Ni Cheallaigh, A.; Potter, G. T.; Gardiner, J. M.; Miller, G. J. Org. Synth. 2016, 93, 200.  doi: 10.15227/orgsyn.093.0200

    14. [14]

      (a) Ferrier, R. J.; Furneaux, R. H. J. Chem. Soc., Perkin Trans. 1 1977, 1996.
      (b) Chiba, T.; Sinay, P. Carbohydr. Res. 1986, 151, 379.

    15. [15]

      (a) Yu, H. N.; Furukawa, J.; Ikeda, T.; Wong, C.-H. Org. Lett. 2004, 6, 723.
      (b) Cheng, W.-C.; Lin, C.-K.; Li, H.-Y.; Chang, Y.-C.; Lu, S.-J.; Chen, Y.-S.; Chang, S.-Y. Chem. Commun. 2018, 54, 2647.

    16. [16]

      (a) Gin, D. J. Carbohydr. Chem. 2002, 21, 645.
      (b) Dondoni, A.; Marra, A.; Scherrmann, M. C.; Casnati, A.; Sansone, F.; Ungaro, R. Chem. Eur. J. 1997, 3, 1774.

    17. [17]

      Suresh, G.; Nadh, R. V.; Srinivasu, N.; Kaushal, K. Synth. Commun. 2016, 46, 1972.  doi: 10.1080/00397911.2016.1242748

  • 加载中
    1. [1]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    7. [7]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

Metrics
  • PDF Downloads(3)
  • Abstract views(1486)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return