Citation: Zhang Qiying, Zhang Yiming, Hao Erjun, Bai Juan, Qu Guirong, Guo Haiming. Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution for the Construction of Carbocyclic N3-Purine Nucleosides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 376-383. doi: 10.6023/cjoc201907053 shu

Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution for the Construction of Carbocyclic N3-Purine Nucleosides

  • Corresponding author: Guo Haiming, ghm@htu.edu.cn
  • Received Date: 30 July 2019
    Revised Date: 30 September 2019
    Available Online: 25 February 2019

    Fund Project: the National Natural Science Foundation of China U1604283the Overseas Expertise Introduction Project for Discipline Innovation D17007the National Natural Science Foundation of China 21602045Project supported by the National Natural Science Foundation of China (Nos. 21602045, U1604283), and the Overseas Expertise Introduction Project for Discipline Innovation (111 Project, No. D17007)

Figures(4)

  • N3-Purine nucleoside can be employed as a potent dual inhibitor to inhibit viruses more effectively because it could be possibly recognized by both purine-and pyrimidine-metabolizing enzymes. Herein, an asymmetric transfer hydrogenation via dynamic kinetic resolution of rac-α-(purin-3-yl)cyclopentones has been developed to produce a wide range of carbocyclic N3-purine nucleosides in high yields and excellent stereoselectivities. Moreover, the catalytic system was suitable for rac-α-pyrimidinyl cyclopentones. With additional transformations, several 2'-F-, AcS-, N3-modified carbocyclic nucleosides could be obtained with good to excellent yields and excellent enantioselectivities.
  • 加载中
    1. [1]

      (a) Zhou, H.; Zeng, X.; Ding, L.; Xie, Y.; Zhong, G. Org. Lett. 2015, 17, 2385.
      (b) Trost, B. M.; Madsen, R.; Guile, S. D.; Brown, B. J. Am. Chem. Soc. 2000, 122, 5947.
      (c) Kakuda, T. N. Clin. Ther. 2000, 22, 685.
      (d) Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S. Chem. Soc. Rev. 2013, 42, 5056.
      (e) Forsman, J. J.; Leino, R. Chem. Rev. 2011, 111, 3334.
      (f) Lebreton, J.; Escudier, J.-M.; Arzel, Len, C. Chem. Rev. 2010, 110, 3371.
      (g) Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207.
      (h) Liu, Y.; Guo, X.; Bai, P. Chin. J. Org. Chem. 2014, 34, 2202 (in Chinese).
      (刘亚君, 郭翔海, 白鹏, 有机化学, 2014, 34, 2202.)
      (i) Fan, X.-S; Zhang, X.-Y.; Wang, X.; Qu, G.-R. Chin. J. Org. Chem. 2008, 28, 1888 (in Chinese).
      (范学森, 张新迎, 王霞, 渠桂荣, 有机化学, 2008, 28, 1888.)

    2. [2]

      (a) Barral, K.; Courcambeck, J.; Pèpe, G.; Balzarini, J.; Neyts, J.; Clercq, E. D.; Camplo, M. J. Med. Chem. 2005, 48, 450.
      (b) Keane, S. J.; Ford, A.; Mullins, N. D.; Maguire, N. M.; Legigan, T.; Balzarini, J.; Maguire, A. R. J. Org. Chem. 2015, 80, 2479.
      (c) Gai, X.; Song, W.; Heng, S.; Yang, W. Chin. J. Integr. Tradit. West. Med. Liver Dis. 2005, 15, 50 (in Chinese).
      (盖欣, 宋万玲, 桓树学, 杨文东, 中西医结合肝病杂志, 2005, 15, 50.)

    3. [3]

      (a) Hu, L.; Ren, Y.; Ramström, O. J. Org. Chem. 2015, 80, 8478.
      (b) Singh, U. S.; Mishra, R. C.; Shankar, R.; Chu, C. K. J. Org. Chem. 2014, 79, 3917.
      (c) Caso, M. F.; D'Alonzo, D.; D'Errico, S.; Palumbo, G.; Guaragna, A. Org. Lett. 2015 17, 2626.

    4. [4]

      (a) Silverman, R. B. The Organic Chemistry of Drug Design and Drug Action, Elsevier, Evanston, 2004.
      (b) Kompis, I. M.; Islam, K.; Then, R. L. Chem. Rev. 2005, 105, 583.
      (c) Lyon, M. A.; Ducruet, A. P.; Wipf, P.; Lazo, J. S. Nat. Rev. Drug Disc. 2002, 1, 961.
      (d) Gangjee, A.; Li, W.; Yang, J.; Kisliuk, R. L. J. Med. Chem. 2008, 51, 68.

    5. [5]

      (a) Jeong, L. S.; Lee, J. A. Antiviral Chem. Chemother. 2004, 15, 235.
      (b) Liu, Y.; Guo, X.; Bai, P. Chin. J. Org. Chem. 2014, 34, 2202.
      (c) Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S. Chem. Soc. Rev. 2013, 42, 5056.

    6. [6]

      (a) Xie, M.-S.; Wang, Y.; Li, J.-P.; Du, C.; Zhang, Y.-Y.; Hao, E.-J.; Zhang, Y.-M.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2015, 51, 12451.
      (b) Huang, K.-X.; Xie, M.-S.; Zhang, Q.-Y.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2018, 20, 5398.
      (c) Wang, J.; Zhang, Q.-Y.; Xie, M.-S.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2018, 20, 6578.
      (d) Gao, Y.-W.; Niu, H.; Zhang, Q.-Y.; Xie, M.; Qu, G.; Guo, H. Adv. Synth. Catal. 2018, 360, 2813.

    7. [7]

      (a) Bhat, B.; Neelima, N. J.; Leonard, H.; Robinson, A.; Wang, H.-J. J. Am. Chem. Soc. 1996, 118, 3065.
      (b) Leonard, N. J.; Laursenf, R. A. Biosci., Biotechnol., Biochem. 1965, 4, 354.

    8. [8]

      (a) Sadler, J. M.; Mosley, S. L.; Dorgan, K. M.; Zhou, Z. S.; Seley-Radtke, K. L. Bioorg. Med. Chem. 2009, 17, 5520.
      (b) Jiang, M. X.-W.; Warshakoon, N. C.; Miller, M. J. J. Org. Chem. 2005, 70, 2824.

    9. [9]

      (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (b) Liu, S.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. 2007, 119, 7650; Angew. Chem., Int. Ed. 2007, 46, 7506.
      (c) Liu, S.; Xie, J.-H.; Li, W.; Kong, W.-L.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2009, 11, 4994.
      (d) Zhou, Q.; Xie, J.; Zhu, S.; Wang, L. Tianjin Sci. Technol. 2014, 41, 11 (in Chinese).
      (周其林, 谢建华, 朱守非, 王立新, 天津科技, 2014, 41, 11.)

    10. [10]

      (a) Zhang, Q.; Ma, B.-W.; Wang, Q.-.Q.; Wang, X.-X.; Hu, X.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2014, 16, 2014.
      (b) Vyas, V. K.; Bhanage, B. M. Org. Lett. 2016, 18, 6436.
      (c) Matsunami, A.; Ikeda, M.; Nakamura, H.; Yoshida, M.; Kuwata, S.; Kayaki, Y. Org. Lett. 2018, 20, 5213.
      (d) Vyas, V. K.; Bhanage, B. M. Asian J. Org. Chem. 2018, 7, 346.
      (e) Liu, Q.; Wang, C.; Zhou, H.; Wang, O.; Lv, J.; Cao, Lu; Fu, Y. Org. Lett. 2018, 20, 971.

    11. [11]

      (a) Zhang, Y.-M.; Zhang, Q.-Y.; Wang, D.-C.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2019, 21, 2998.
      (b) Sun, H.-L.; Chen, F.; Xie, M.-S.; Guo, H.-M.; Qu, G.-R.; He, Y.-M.; Fan, Q.-H. Org. Lett. 2016, 18, 2260.

    12. [12]

      (a) Chan, A. S. C.; Pluth, J. J.; Halpern, J. J. Am. Chem. Soc. 1980, 102, 5952.
      (b) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.

  • 加载中
    1. [1]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    2. [2]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    3. [3]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    4. [4]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    8. [8]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    9. [9]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    10. [10]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    11. [11]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    12. [12]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    13. [13]

      Lu-Lu HeLan-Tu XiongXin WangYu-Zhen LiJia-Bao LiYu ShiXin DengZi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044

    14. [14]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    15. [15]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    16. [16]

      Chunyu YanQinglong QiaoWei ZhouXuelian ZhouYonghui ChenLu MiaoZhaochao Xu . FRET-based in vitro assay for rapid detecting of SARS-CoV-2 entry inhibitors. Chinese Chemical Letters, 2025, 36(5): 110258-. doi: 10.1016/j.cclet.2024.110258

    17. [17]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    18. [18]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    19. [19]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    20. [20]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

Metrics
  • PDF Downloads(14)
  • Abstract views(1985)
  • HTML views(211)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return