Citation: Pi Chao, Qu Yaping, Cui Xiuling, Wu Yangjie. Silver-Catalyzed C—H Alkylation of 2-Arylindoles with Maleimides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 740-747. doi: 10.6023/cjoc201907040 shu

Silver-Catalyzed C—H Alkylation of 2-Arylindoles with Maleimides

  • Corresponding author: Cui Xiuling, cuixl@zzu.edu.cn Wu Yangjie, wyj@zzu.edu.cn
  • Received Date: 26 July 2019
    Revised Date: 23 October 2019
    Available Online: 1 November 2019

    Fund Project: the Key International Cooperation Projects from Chinese Ministry of Science and Technology 2016YFE0132600Project supported by the Key International Cooperation Projects from Chinese Ministry of Science and Technology (No. 2016YFE0132600)

Figures(4)

  • A highly efficient and regioselective C-3-alkylation of 2-arylindoles with maleimides has been developed using Ag(I) as catalyst. 3-(2-Aryl-1H-indol-3-yl)pyrrolidine-2, 5-diones were afforded with high yields (up to 97%) under relatively mild reaction conditions. The method features operational simplicity and avoiding external oxidant.
  • 加载中
    1. [1]

      (a) Karamyan, A. J. K.; Hamann, M. T. Chem. Rev. 2010, 110, 4489.
      (b) Gupta, L.; Talwar, A.; Chauhan, P. M. S. Curr. Med. Chem. 2007, 14, 1789.
      (c) Gul, W.; Hamann, M. T. Life Sci. 2005, 78, 442.

    2. [2]

      (a) Knight, Z. A.; Shokat, K. M. Chem. Biol. 2005, 12, 621.
      (b) Kung, C.; Kenski, D. M.; Krukenberg, K.; Madhani, H. D.; Shokat, K. M. Chem. Biol. 2006, 13, 399.

    3. [3]

      (a) Okamoto, A.; Nikaido, T.; Ochiai, K.; Takakura, S.; Saito, M.; Aoki, Y.; Ishii, N.; Yanaihara, N.; Yamada, K.; Takikawa, O.; Kawaguchi, R.; Isonishi, S.; Tanaka, T.; Urashima, M. Clin. Cancer Res. 2005, 11, 6030.
      (b) Röhrig, U. F.; Majjigapu, S. R.; Vogel, P.; Zoete, V.; Michielin, O. J. Med. Chem. 2015, 58, 9421.
      (c) Platten, M.; von Knebel Doeberitz, N.; Oezen, I.; Wick, W.; Ochs, K. Front. Immunol. 2015, 5, 673.
      (d) Cong, W.; Wang, L.; Yu, F.; Li, J. Chin. J. Org. Chem. 2018, 38, 2866(in Chinese).
      (丛文霞, 王莉, 于福强, 李纪兴, 有机化学, 2018, 38, 2866.)

    4. [4]

      (a) Peifer, C.; Krasowski, A.; Hammerle, N.; Kohlbacher, O.; Dannhardt, G.; Totzke, F.; Schachtele, C.; Laufer, S. J. Med. Chem. 2006, 49, 7549.
      (b) Baetlett, S.; Beddard, G. S.; Jackson, R. M.; Kayser, V.; Kilner, C.; Leach, A.; Nelson, A.; Oledzki, P. R.; Parker, P.; Reid, G. D, ; Warriner, S. L. J. Am. Chem. Soc. 2005, 127, 11699.
      (c) McDonnell, M. E.; Bian, H.; Wrobel, J.; Smith, G. R.; Liang S.; Ma, H.; Reitz, A. B. Bioorg. Med. Chem. Lett. 2014, 24, 1116.

    5. [5]

      (a) Crider, A. M.; Kolczynski, T. M.; Yates, K. M. J. Med. Chem. 1980, 23, 324.
      (b) Chou, T.-C.; Wu, R.-T.; Liao, K.-C.; Wang, C.-H. J. Org. Chem. 2011, 76, 6813.
      (c) Shiri, M. Chem. Rev. 2012, 112, 3508.
      (d) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
      (e) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
      (f) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.

    6. [6]

      Gunosewoyo, H.; Midzak, A.; Gaisina, I. N.; Sabath, E. V.; Fedolak, A.; Hanania, T.; Brunner, D.; Papadopoulos, V.; Kozikowski, A. P. J. Med. Chem. 2013, 56, 5115.  doi: 10.1021/jm400511s

    7. [7]

      (a) Peifer, C.; Dannhardt, G. Anticancer Res. 2004, 24, 1545
      (b) Peifer, C.; Stoiber, T.; Unger, E.; Totzke, F.; Schachtele, C.; Marmé, D.; Brenk, R.; Klebe, G.; Schollmeyer, D.; Dannhardt, G. J. Med. Chem. 2006, 49, 1271
      (c) Ganser, C.; Lauermann, E.; Maderer, A.; Stauder, T.; Kramb, J.-P.; Plutizki, S.; Kindler, T.; Moehler, M.; Dannhardt, G. J. Med. Chem. 2012, 55, 9531.

    8. [8]

      Crosignani, S.; Bingham, P.; Bottemanne, P.; Cannelle, H.; Cauwenberghs, S.; Cordonnier, M.; Dalvie, D.; Wythes, M. J. Med. Chem. 2017, 60, 9617.  doi: 10.1021/acs.jmedchem.7b00974

    9. [9]

      Nakazono, M.; Jinguji, A.; Nanbu, S.; Kuwano, R.; Zheng, Z.; Saita, K.; Oshikawa, Y.; Mikuni, Y.; Murakami, T.; Zhao, Y.; Sasaki, S.; Zaitsu, K. Phys. Chem. Chem. Phys. 2010, 12, 9783.  doi: 10.1039/c003021j

    10. [10]

      (a) Hugon, B.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Tetrahedron Lett. 2003, 44, 3935.
      (b) Wilson, D.; Li, J. W.; Branda, N. R. ChemMedChem 2017, 12, 284.
      (c) Bergman, J.; Desarbre, E.; Koch, E. Tetrahedron 1999, 55, 2363.
      (d) Yang, M.; Cao, S.; He, Z. Chin. J. Org. Chem. 2019, 39, 2235(in Chinese).
      (杨梅, 曹仕轩, 贺峥杰, 有机化学, 2019, 39, 2235.)

    11. [11]

      (a) Bandini, M.; Melchiorre, P.; Melloni, A.; Umani-Ronchi, A. Synthesis 2002, 1110.
      (b) Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2003, 68, 4594.
      (c) Arcadi, A.; Bianchi, G.; Chiarini, M.; D'Anniballe, G.; Marinelli, F. Synlett 2004, 944.
      (d) Henon, H.; Messaoudi, S.; Hugon, B.; Anozon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2005, 61, 5599.
      (e) Liu, P.; Chen, W.; Ren, K.; Wang, L. Chin. J. Chem. 2010, 28, 2399.
      (f) Yang, J.; Zhang, J.; Chen, T. T.; Sun, D. M.; Li, J.; Wu, X. F. Chin. Chem. Lett. 2011, 22, 1391.

    12. [12]

      An, Y.-L.; Shao, Z.-Y.; Cheng, J.; Zhao, S.-Y. Synthesis 2013, 45, 2719.  doi: 10.1055/s-0033-1339515

    13. [13]

      An, Y.-L.; Yang, Z.-H.; Zhang, H.-H.; Zhao, S.-Y. Org. Lett. 2016, 18, 152.  doi: 10.1021/acs.orglett.5b02944

    14. [14]

      (a) Niu, Y.-N.; Yan, Z.-Y.; Gao, G.-L.; Wang, H.-L.; Shu, X.-Z.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem. 2009 74, 2893.
      (b) Mohan, D. C.; Rao, S. N.; Adimurthy, S. J. Org. Chem. 2013, 78, 1266.
      (c) Wang, C.; Chen, Q.; Guo, Q.; Liu, H.; Xu, Z.; Liu, Y.; Wang, M.; Wang, R. J. Org. Chem. 2016, 81, 5782.
      (d) Yang, Z.-H.; Tan, H.-R.; Zhu, J.-N.; Zheng, J.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 1523.

    15. [15]

      (a) Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.
      (b) Wu, Z.; Pi, C.; Cui, X.; Bai, J.; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971.
      (c) Pi, C.; Cui, X.; Liu, X.; Guo, M.; Zhang, H.; Wu, Y. Org. Lett. 2014, 16, 5164.
      (d) You, C.; Pi, C.; Wu, Y.; Cui, X. Adv. Synth. Catal. 2018, 360, 4068.
      (e) Wang, L.; Xiong, D.; Jie, L.; Yu, C.; Cui, X. Chin. Chem. Lett. 2018, 29, 907.
      (f) Yang, Z.; Jie, L.; Yao, Z.; Yang, Z.; Cui, X. Adv. Synth. Catal. 2019, 361, 214.
      (g) Yuan, T.; Pi, C.; You, C.; Cui, X.; Du, S.; Wan, T.; Wu, Y. Chem. Commun. 2019, 55, 163.
      (h) Pi, C.; Yin, X.; Cui, X.; Ma, Y.; Wu, Y. Org. Lett. 2019, 21, 2081.
      (i) Ren, J.; Pi, C.; Wu, Y.; Cui, X. Org. Lett. 2019, 21, 4067.
      (j) Shen, Z.; Pi, C.; Cui, X.; Wu, Y. Chin. Chem. Lett. 2019, 30, 1374.
      (j) Shi, Z.; Wang, L.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596(in Chinese).
      (施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)

    16. [16]

      The absolute configuration of 3aa (CCDC 1844023) was determined by X-ray crystallographic analysis, and contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB21EZ, U.K., deposit@ccdc.cam.ac.uk); fax: +441223336033.

    17. [17]

      (a) Zhang, F.; Qin, Z.; Kong, L.; Zhao, Y.; Liu, Y.; Li, Y. Org. Lett. 2016, 18, 5150.
      (b) Liu, Z.; Vidovic, D. J. Org. Chem. 2018, 83, 5295.
      (c) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524.
      (d) Liu, Z.; Vidovic, D. Chem. Soc. Rev. 2015, 44, 8124.

    18. [18]

      (a) Yang, Y.; Yu, J.-X.; Ouyang, X.-H.; Li, J.-H. Org. Lett. 2017, 19, 3982.
      (b) Sadamitsu, Y.; Komatsuki, K.; Saito, K.; Yamada, T. Org. Lett. 2017, 19, 3191.
      (c) Li, F.-L.; Wang, L.; Li, C.-H.; Liu, N.; Dai, B. ACS Omega 2017, 2, 1104.

    19. [19]

      Chen, W.-L.; Wu, S.-Y.; Mo, X.-L.; Wei, L.-X.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 3527.  doi: 10.1021/acs.orglett.8b01294

    20. [20]

      (a) Mandal, A.; Sahoo, H.; Dana, S.; Baidya, M. Org. Lett. 2017, 19, 4138.
      (b) Liu, S.-L.; Li, Y.; Guo, J.-R.; Yang, G.-C.; Li, X.-H.; Gong, J.-F.; Song, M.-P. Org. Lett. 2017, 19, 4042.

  • 加载中
    1. [1]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    2. [2]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    3. [3]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    4. [4]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    5. [5]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    6. [6]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    7. [7]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    8. [8]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    9. [9]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    10. [10]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    11. [11]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    12. [12]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    13. [13]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    14. [14]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    15. [15]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    16. [16]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    17. [17]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    18. [18]

      Kun ZhangXin-Yue LouYan WangWeiwei HuanYing-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464

    19. [19]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    20. [20]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

Metrics
  • PDF Downloads(10)
  • Abstract views(988)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return